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ABSTRACT

The concept of utilizing sound waves as reflectors for pulsed

Doppler radar as a means for measuring wind velocity, turbulence,

and air temperature has been examined theoretically. Any

extension of the initial and successful, small scale experimn its

performed by Midwest Research Institute to a practical system

for atmospheric probing is snown to reiuire a change in the

operating concept of the acoustic system. This change involves

the abandoning of the concept of coherent reflection reinforce-

ment from a multiple wave train and the substitution of

reflection from a single acoustic shock front with the introduc-

tion of coherent Integration of the pulsed Doppler radar signal.

A preliminary experimental approach to a practical system Is

proposed.

-viii
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1. 1IN TRR0D 1j C T10IN

The use of radar to detect meteorological disturbances is now

4uite commonplace. Weather fronts can be observed, wind dis-

turbances behind a front carrying hunmid air off the ocean upward

and mixing with relatively dryer air are cleary visible under

some conditionsI/- the problem of "an ...!ls" and clear air turbu-

lence detection by radar are being stuc.ied with some success. 2 34/

Back scattering from turbulence and precipitation are being used

to study storms and evaluation of vertical winds in storm centers.

ce, In storm centers radar is reflected from the interfaces where

gross difference in refractive index exists between air and water

or ice particles. In the study of weather fronts and turbulence,

use is Imade of the much smaller index variations caused by changes

in density as between war-m and cold air, moving and stationary air

in turbulence or between dry anj humid air These variations in

index though small amount Lo several s'-units, i.e., several parts

per million in .the index of refraction of air whIch Itself is of

the order of 1.000,320

1.
The present study considers the use of a sound wave as a reflecting

surface. Such a surface has the great advantage of being available

ujon commuand and having a relatively large area oriented exactly

or nearly in such a way as to focus the reflected radar beam back

toward the receiver. Unfortunately, a sound wave which can be

tolerated by personnel and buildings in the vicinity of the sound

source can provide a change in index of refraction wh-ch is small

compared with the changes associated with normal variations

occurring naturally in the atmosphere. Near the source sound

levels nigher than about 160 db would not be tolerable; these

wou•d create index variations of about 10 N-units.
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( As sound waves propagate away from the source, they decrease in

amplitude because of divergence of the sound, normal absorption

of sound as heat in the atmosphere, and because of excess absorp-

tion caused by finite amplitude losses when large sound waves

are used. All of these factors limit the amount of sound which

can oe propagated any great distance from the source. in order

to observe sound waves which travel 2 miles or more from the

source it appears necessarj that the radar system be able to

detect changes in index of refraction which are small compared

with an N-unit.

The fact that a sound wave gives a large, substantially coherent

surface from which to reflect radar aids in making possible the

detection of its small change in index of refraction.

Pioneering theoretical and experimental work on the EMAC probe

carried on by Midwest Research Institute has shown the feasibil-

ity of this tool for measuring wind velocity. Experiments have

checked well with theory.

In summary, the efforts of MRI have been directed toward over-

coming the limitations of the small change in index of refraction

associated with a sound wave by using a train of many waves and

obtaining coherent reinforcement of the reflections from the

individual waves by matching the radar and acoustic waves accord-

ing to the equation

S= 2N (1.1)
e a

where • is the electromagnetic wavelength X_ is the acoustic
e a

wavelength.

-2-
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With an exact wavelength match, a reflection with zero phase

change occurs at each index rise and a reflection with 1800 phase

change occurs at each index fall along the wave train. Thus, a

train of 100 waves gives the effect of 200 mirrors. If coherence

is maintained throughout the entire train of n waves the net

reflected power will be n 2 times the power from 1 wave or 4n 2

times the power from 1/2 of a sinusoidal sound wave.

The advantage of coherent reinforcement resulting from a train of

waves is indeed inviting, but it has serious limitations in a real

atmosphere with wind, turbulence, and other inhomogeneities. It

is necessary that the wavelengths of radar and sound match accord-

ing to Eq. 1.1 to within 1/4 Na over the full length of the train2 a
in order to obtain the n advantage. Such a match made at any

location generally will not remain a match as the sound train

passes into a region of different temperature or a region where

wind changes the sound ground speed.

Thus, in order to obtain a match at a new location the radar

frequency must be altered so that the radar wavelength tracks

the sound wavelength at the location of the reflection.

This, at best, involves complicated tracking circuits and requires

expenditure of some tracking time for the optimization of the radar

frequency. Inherent in the fact that the air is generally turbu-

lent and otherwise inhomogeneous is the concomitant fact that the

acoustic wavelength along a wave train will not be constant and

in general there will be no one radar frequency which can satisfy

the rejuiremert for wave matching over more than a very limited

wave train length. The seriousness of this limitation increases

with the inhomogtneity of the air being studied.

-3-
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T n o r d p r t o l o c a l i z e t h e' r e - . , ,o . o f t h e a t . . . - -- -

.... .. .. .... .... . ..... phere 'being studied

the wave train should not be more than several feet long. In

order that such a wave train contain many wavelengths the waves

must be short. Midwest Research institute used an acoustic sig-

nal of 22 kc for which the wavelength was approximately 1/2 inch.

For such a beam the length of 100 waves is only 50 inches, a very

reasonable length permitting fine detail in atmospheric probing.

However, sound at this high frejuency and small wavelength is

rapidly attenuated in air. In their experiments, measurements

could not be carried beyond about 93 feet.

Calculations in Section 4.43 show that the experimental system

used by MRI was very nearly optimized for the acoustic frequency

used, and that no increase in range may be expected by increas-

ing the size or power of the acoustic source. Some gain might

be secured from an increase in radar power but at 100 ft the

acoustic wave had a sound level of the order of 100 db and

decreased so rapidly that within a few feet it would be at the

noise level expected in a turbulent atmosphere.

The present study extends the concept explored by NRI, and con-

siders the use of individual shouck fronts as the reflector for

the radar signal, since such shcck fronts can be made to propa-

gate and maintain useful intensity for ra.nges of several

thousand feet. This study indicates the direction which should

be taken in developing the EMAC Probe into a practical tool.

-'4-
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The present study of the parameters governing the operation of

the 3ý.4AC Probe has been motivated by the need for the measure-

ment of the atmospheric conditions at distances remote from the

measurement position on the ground. Specifically, this study

is directed towards measurement of wind and temperature in the

atmosphere as an aid in weather observation and as an aid in

aircraft and missile guidance problems where such detailed

information within a range of a mile or two from the source is

needed on a substantially instantaneous and continuous basis.

1.2 Atmospheris,. Parameters of Interest

In additiQn to the measurement of wind it is desirable to measure

or a• least to obtain qualitative description of the wind shear,

turlence, humidity, and temperature variation throughout this

field of search. The present study considers the possibility

of observing these parameters with the EoI.AC Probe.

1.3 :1eans for Remote Measurement

Conventional techniques for remote measurement of wind velocities,

such as the visual observation of free balloons or clouds, and

radar interception of' chaff or naturally occurring inhomogenei-

ties in the atmosohere have serious limitations arising either from

the delayed resDonse or the relatively small and highly unpredict-

able region which may be covered by such measuring techniques. It

is desired to be able to measure the wind velocity at any height

and in any direction from a fixed observation point in a substan-

tially continuous manner in order that the total wind field in

the vicinity of the measuring point can be determined completely.
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Several means for indirect probing of the atmosphere are under

consideration by various agencies. A good discussion of these

probing methods has been published. /They include the use of

infra-red radiormetry, optical lasers, and radar of several types

including coherent pulse Doppler radar. All of these depend

upon observing particles, inhomogeneities or density irregulari-

ties in the atmosphere. Interpretation of the reflected signal

in many cases can give significant information concerning the

nature of irregularities causing the reflection and about their

motion in the atmosphere. However, since these irregularities

are random in nature and since there is no control over their

position, the detailed measuring of atmospheric parameters

throughout the region surrounding the measuring point is generally

incomplete and therefore the mapping of such parameters necessarily

involves large extrapolation of the observable data. This process

gives insufficient accuracy for many purposes.

Wind velocity and turbulence can be measured by obtaining radar

reflections from density irregularities in the atmosphere or

solid particles such as rain, snow, chaff and fog suspended in
the air. Such measurements approximate the motion of the air

since the particles observed follow the motions of the air

fairly accurately if their size is less than 1 ,m in diameter.

In some instances the observed objects are dropping through the

air at speeds which are large compared with-the velocity of the

air itself. Chaff, which is light and can fall slowly, has

limited application since it must be carried to a position

above the point of observation and allowed to drift at the mercy

of the elements hopefully into the region of interest.

-6-



1.4 EIAC Probe Technique

The electromagnetic acoustic (WA) probing method provides a

reflecting surface which moveE through the atmosphere with the

speed of sound altered only by variations in wind speed and

air temperature. The reflected signal carries Information by

which the speed of the sound wave can be determined in the

direction of the radar beam. By combining the information gained

from reflected signals in various directions it appears possible

and practical to calculate, not only the speed of the wave in

the direction of the radar but to deduce the actual wind speed

and direction, as well as to determine the air temperature and

estimate the amount of turbulence existing in various regions

within the range of the system.

The use of radar to observe or interrogate vibrating media,

surfaces, or objects is not new. Basic patents2/reading on the

art of detecting and measuring the velocity or vibration of air,

liquids, or solid objects were issued on disclosures made during

World War II.

The application of this art to the specific problem of measuring

wind velocity by reflecting radar pulses from intense sound

waves as described in reports by Midwest Research Institute7 8j9•10/

demonstrates the feasibility of the process. Comparison of the

theory and the experimental results indicates that as yet the

theoretical limitations on the useful range of the velocity

measuring technique have not been approached. This report pro-

vides a theoretical discussion of the parameters influencing the

optimization of the range and sensitivity of the EMAC Probe. In

particular, theory and experience available regarding acoustic

wave propagation in the atmosphere and the more subtle finite

-7-
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amplitude phenomena associated with the propagation of sound
waves of large amplitudes indicates that the range of the

EMAC Probe can be greatly extended by proper choice of the

acoustic wave parameters.

The electromagnetic acoustic probe as described by Midwest

Research Institute has proved successful out to distances

approaching 100 ft but the extension of its useful range requires
significant changes in its operating parameters. The choice of

high frequency sound waves is its greatest limitation. A suffi-

ciently large reduction of the frequency, however, results in

such long acoustic wavelengths that it becomes impractical to

use a radar wave which is comparable in length with the acoustic

wave and still maintain the degree of beam definition which is

necessary for fine scanning and analysis of wind and turbulence

structure. Thus, the radar wavelength must be kept relatively

short compared to the acoustic wavelength.

This change appears at first to imply that the reflection

coefficient for the acoustic wave will drop severely, but it

is possible to utilize a sawtoothed sound wave which has a

steep leading edge. This will have the reflectivity of a pressure

discontinuity less than 1 ft in thickness. Such a discontinuity

will act as a good reflector for a radar wave of the order of

2 ft in length, i.e., a 400 megacycle frequency.

The use of a long acoustic wave necessitates abandoning the

concept of coherence between acoustic wave fronts. This loss,

however, is not as serious as may appear from theoretical con-

siderations of ideal wave propagation conditions. Such coherence

would be effective only in homogeneous air masses which are of

small interest and highly improbable in a real atmosphere

--8-
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outside of the laboratory. It is more realistic to substitute

coherent integration between radar pulses since the radar speed

is substantially unaffected by the atmospheric variation3 of

wind turbulence, etc., and within the time interval of 50 radar

pulses (repetition rate of 3000 pps) the sound wave wil! travel

only 15 ft and the wind and turbulence velocities will e-.ýmain

substantially constant over all points within the radar beam

cross section. By this means, full advantage can be taken of

a fifty pulse coherent integration. Such a change in operating

technique will more than make up for the loss in potential gain

from multiple wave reflection. This mode of operation will also

eliminate the need for frequency variation in the radar which

was required to match lengths between radar and acoustic waves.

The use of a fixed radar frequency will eliminate one search

dimension and permit the more rapid accumulation of data and

the more thorough search of the dimensions which are of direct

interest.

The results of the present analysis show that an E4AC Probe

system employing proper sound pulses can provide a substan-

tially continuous sweep scan of the hemispherical atmospheric

region around the observation point and provide a relatively

complete map of the wind velocity and turbulence in this region

out to a distance of about 2 miles. The ultimate range will

depend primarily upon the weather conditions, the amplitude of

the sound waves permitted at the source as determined by

community and personnel considerations, and upon the sensitivity

of the radar receiving system.

-9-
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2. RADAR REFLECTION COEFFICIENTS

2.1 Reflection From a Sharp Dielectric Discontinuity

The simplest case of reflection of electromagnetic waves is by a

plane discontinuity in the index of refraction n. A change In n

is "sharp" if it takes place over a distance short compared with

one quarter of the electromagnetic wavelength. For reflection

at normal incidence, the Fresnel formula for reflected power gives

.V (=~ ) (2.1)

where Pi ' P. are incident and reflected radar powers respectively

nI , no indices of refraction on opposite sides of the discontin-

uity.

In the atmosphere, n is nearly unity and the variation in n

obtainable with usable pressure discontinuities is so small com-

pared with unity that &q. (2.1) can be replaced by the simpler

form

P r n)2" (2.2)

where 6n = nI -n 0 .

2.2 Reflection From Gradual Dielectric Variations

For a gradual change in n, reflection of the radar will occur

at all points in the region of variation. Since, as the radar

wave progresses, its phase changes from point to point, the

-10-f
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reflected contribu~ons of each point must be added in proper

phase to obtain their sum. This requires determination of the

reflected electric field in order to determine the reflected

power, rather than calculation of the power directly. The

reflected wave is found by replacing the continuously varying

n(x) [Fig. 2.1a] by a series of steps [Fig. 2.1b].

The Fresnel formula for the electric field amplitude reflected

from each step dn(x) is

=E(x) dn(x) (2.3)

By allowing the incident electric field amplitude Ei(x) to vary
with x, we can take into account effects of different pulse shapes

as discussed in Siegert and Goldstein.'!'/ For an electromagnetic
wave have a wavelength ', the electric field contribution
reflected from point x has a phase of 2(2rX/N e) relative to the
contribution reflected from x = 0. Thus, the amplitude and

phase of dEx is given by

Ei (x) r(x
dE~x = .--. 2 exp [-4-;rix/Ne (2.4)

As dx -- 0. the sum of the reflected contributions from all

elements, dx, between x0 and xl, can be expressed as the integral

-11-
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r nl E (X)E I j I,--, exp I- 4ix 'dn(xl

r= 2 L Re J '
nO0

ij id EI x) exp dx (2.5)

x0

if multiple reflections are neglected. The reflected power
is the square of the magnitude of the reflected E field.

There are many combinations of pulse shape and index of refraction
variations which are of interest. We will consider a few of these
special cases below.

Case A. Radar pulse length infinite (A: = const).

In this case Eq. (2.5) becomes

E r n ,r
E (= exfF 4. 1 1 dx (2.6)
r 2' ex

A sub-case of Case A is that of linear variation of n from
n to nI over a distance A as shown in Fig. 2.2.

In this case

E i n fx0 + 4 ri
Er =ArI-Q

x0 
-

Ei~8•i Re[ 4•~o [ ' " ---A)e(2 )w -± - exp - - -exp -

-12-
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or

P i6n 2 sin e) (2.8)

SL 2_T)

The value of 4P?/[Pl(6n)2) is plotted vs. &/Xe in Fig. 2.3.
This gives the reflection coefficient relative to that for an

infinitely sharp shock. For A << X this case reduces to thate
of the sharp discontinuity discussed in Sec. 2.1.

The variation in n shown in Fig. 2.2 and used in calculations

above has two "sharp" edges at x = x and x = x0 + A . The

se interference between these edges produces maxima and minima in
the reflection coefficient as shown in Fig. 2.3 We can also
calculate the reflection from shocks with one or zero sharp edges.
A shock with one sharp edge at x = 0 and the other rounded such
that

n=n 0  x<0
) (2.9)
n =n + 6n [- exp (-x/A)] x > 0

for which the shock width is defined by A. For this variation
in n, the power reflection coefficient is

Pr n(0)2 2  (2.10)
S-2 / i ,2,. (X10

which is also plotted in Fig. 2.3. This curve does not show the
maxima and minima of Eq. (2.8) but falls off as (k•A) 2 as does

the average value for wide shocks described by Eq. 2.8.

-13-
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Friend-V has calculated the reflection from index of refraction

c-anges with ho sharp edge3. He considers a change, of "width"

A, of the form

n =n +6n exp (4 x•

S n + exp t x /(2.)

for which the reflection coefficient is

Pr n 2 9A/e(2.12)1 1 \k 2 sinh (9a/i e) (.2

which"is also plotted in Fig. 2.3. The reflection from this

shock falls off much more rapidly with shock thickness than the
reflection from the shocks with either one or two "sharp" edges.

This fpct may be of practical significance in regard to reflection

from acoustic shock waves. The leading edge of the shock front,

at which the density begins to rise, appears experimentally to be

much sharper than the crest of the wave at large distances from

the source. This matter is discussed in more detail in Sec. 4.43.

Case B. Finite radar pulse length

To show the importance of the radar pulse shape, we will consider
dna linear variation in n extending over all space. Thus = constant.

In this case Eq. (2.5) becomes

Er 1 dn Ei3. ) exD[-!ri] dx (2.13)
NeJ
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Since the radar pulse length is finite, Ei is zero at the lower

and upper limits and we can integrate (2.13) by parts obtaining

1 dn e Eiexp,[ 4irix] d (2.14)

Siegert and Goldstein consider the case of a trapezoidal pulse

as showm in Fig. 2.4. For this pulse

dEi
-H-= 0 except for 0 < x < a and b < x < (b + a)

so Eq. (2.14) becomes

1[{/a [ •b+a 1
Er n E Eo A e -f f a 4ri] dx _baep 4

E • exp - -- j'-J expA- e dx
(fo e L eJ

(2.15)

Integrating gives

1t Er Eqx [21 exp 4lria)[l ex. 4 /ib (2.16)
int.Ie e

which results in a reflected power Pr lEr12 of

P n o 2(1e )4 sin 2 32 isn 2(2wb) (2.17)

-15-
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Writing this with the notation of Case A gives

"r• = Pi~~~~~(Sn)2 [sin (2ra/Xe][2-w] [•J(m/e) ei ]2]2•

= [sin (2.18)

In actual practice, a pulsed radar will probably be used to conserve
power, to produce minimum interference with the reflected signal,

and permit the measurement of the range of the acoustic wavefront.
Then Eq. (2.18) shows that if A>b>a, the maximum reflection will

occur for a value of a as small as possible and a value of b equal
to an odd multiple of Xe/4. Siegert and Goldstein also show that

for a smooth radar pulse (not a trapezoid), the reflection is
greatly decreased if a>>Ae. This is analogous to the difference

shown in Fig. 2.3 between sharp and smooth variations in n.

The use of pulsed radar thoigi. useful, for reasons siteJ above,

will involve some loss in returned signal. It can be seen from

a comparison of Eqs. 2.8 and 2.18 that a radar pulse of any shape

gives less return signal intensity than a continuous radar wave
from a gradual change of index in which A>>e. It can be siilXarly

shown that changing the radar pulse shape cannot enhance the reflec-

tion from a "sharp" change in n. For the type of variation of n

shown in Fig. 2.2, the reflected E field described by Eq. (2.5)

becomes

E o EiW exp 4rix] dx (2.19)Er ME of (e I

In the case of A<<Ael the exponential in Eq. (2.19) is almost

constant and the maximum reflection results for any shape pulse

with its largest amplitude between x = 0 and x = &. T-hus, chang-

ing the pulse shape will not change the reflection from a sharp

variation in n.

-16-
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/

In the following sections we will calanhi-x- the reflect•on•----

different formis of variation in n. The pulse shape will not

affect these results significantly and the radar signal will be

taken as an infinite wave train for simplicity of calculation.

2.3 Reflection From a Sinusoidal Wave Train

arve The normal incidence reflection from a train of plane sine waves

has been calculated by means of a transmission line analogy.i-/
A more direct derivation makes use of the methods of Sec. 2.2.

With a constant radar pulse amplitude, Eq. (2.5) becomes

Er 1 dx (2.20)_½ d exp -r h

Xo

For a train of N sine waves of wavelength Aa. we have

n = n0 + 5n.sin 27x/Aa for 0 < x < N Na (2.21)

%lyI
ec- n = n0  otherwise

Putting

dn 2r 6 n cos 217x for 0 < x < N A (2.22)

h 0 otherwise

-17-
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r r~nr 2r 4rix
Er ibn a 2-Cos exp dx (2.23)

!ia Ja Na

The power reflection coefficient is the absolute square of this

ratio. This reflection coefficient has two different forms

depending on whether Ae 2 A cr not.

Case I X = 2A
e a

In this case the power reflection coefficient is

Pr (6n)_ 2 N2  
(2.24)

i 4

The power reflected increases as the square of the number of

wavelengths in the train. However, it is important to realize

that this expression is valid only if the radar and acoustic

waves remain in phase thrcughout the entire length of the train.

Fluctuations in phase and amplitude of the acoustic wave occur be-

cause of propagation tnrough inhomogeneities in the atmosphere.

The radar wave is affected much less .y inhomogeneities than is

the acoustic wave and consequently the acoustic and radar waves

may get out of phase seriously even within the length of the

acoustic wave train.

-F I-
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Case 2 ? e y 2Xa

In this case the power reflection coefficient is

__( 2? 2 27
r = .N 2  sin N 2 27.e (2.25)

P- 42Tr N (i - 2Ae

The value 10/ of Pr/P, for values of 'e about 2Xa are plotted in

Fig. 2.5 for two values of N.

It is apparent that the reflection coefficient drops to zero when

the phase difference between acoustic and radar waves increases

to r over the wave train. Equation (2.25) represents a diffraction

pattern whose height increases as N2 and whose width decreases as

1/N 2. The height of the secondary maxima in Fig. 2.5 is at least

13 db below that of the principal =aximum. The results show the

effect of a deviation from X - 2X but do not show the effect of
e a

phase fluctuations in the acoustic wave train.

2.4 Normal Incidence Reflection from a Train of Plane Shock Waves

In this case we take n(x) as shown in Fig. 2.6.

The power reflection from each steep wavefront will be

-19-
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as calculated in Sec. 2.1. The power reflectIon from each

sloping portion of the wave will be

P r/n sin 2r / p 2 " . 7-= - ae 2  (2.27)

as calculated in Sec. 2.2 and plotted in Fig. 2.3 (A takes the

place of Xa in Fig. 2.3). It is apparent that the power reflected

from the more gradual slope can be neglected compared with that

reflected from the steep leading edge If A a is comparable with or

larger than A e/2. Therefore in considering a train of shock

waves, we need only consider the leading edges of the shocks.

From Eq. (2.20) for a train of N shocks, we find

Er N
r ="- •n exp -47rim -ee (2.28)

m--o

For N >> 1, there will be strong reflection if 2X a/e- = s where

s is any integer. This is to be contrasted with the condition for

reflection from a train of sine waves where strong reflection can

be obtained only when 2a/X e = i.

For the shock waves

Pr (5n)2 N2  
(2 29)

= ~2

-20-
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T, M- maxi.um, use,,.l wave AL. . T train length is still limited to that

for which the waves remain in phase. For the train of shock

waves, we must have Ma = NSAe/2 to within about Xe/4. If

product Ns is much greater than one, this requirement is very

stringent and will probably prevent coherent reinforcement in

a wave train. In this case the reflection, on the average,

will be approximately equal to that from a single shock front

and there will be no enhancement of the power reflection due

to multiple shock waves.

2.5 Normal Incidence Reflection From One Plane Shock Wave

We have already seen that P/P 1 = (5n)2 /4 for reflection from

one plane shock. It is now necessary to calculate 6n as a

function of the shock strength. For shocks that are not too

strong, density and pressure are related adiabatically

1dp (2.30)7y P P

where ey = the ratio of specific heats.
The index of refraction n is related to density by

d(n-l) _ ýp = _p1 (2.31)
n-I P Yp

For weak shocks in air,

n ((2.32)

-21-
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Since P /P. deoends on (fn)2 the rfc, c ...... lr I -- ---. .. % - ... ... feie..u n t will

depend on the square of the shock strength. Since the shock in-

tensity is proportional to (6p) 2 also, the curve of reflection

coefficient vs. shock intensity will be linear. For typical

atmospheric conditions of p0 = 1000 millibars, T = 150 C., and

R.H. = 65%, the index of refraction no = 1.00032. The curve of

reflection coefficient vs. shock intensity is plotted in Fig. 2.7.

When no differs from 1.000320 the reflection losses as given in
Fig. 2.7 will change. Such change in no results from changes

in absolute humidity and from changes in pressure primarily due

to altitude. The gross magnitude of such changes in N units and

the corresponding effect upon the radar -eflection in db for
typical air masses as a function of altitude is shown in Fig. 2.7a.

-22-
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3. vARrIATION IN REFLECTION DUE TO INHOMOGENEITIzS

3.1 Wavefront Deformation Due to Atmospheric Inhomogeneities

The distortion of the acoustic wavefront caused by large scale

atmospheric inhomogeneities such as steady wind, wind shear, and

temperature gradients can be calculated using geometric acoustics.!--/

The location of a point on the wavefront is given by

r t
= j ( +V)dt (3.1)

where a = sound velocity

V = wind velocity

3.11 Wind direction and magnitude

If the temperature and wind velocity are constant in the region

considered, then a and V can be taken outside the integral giving

r = (i + V) t (3.2)

This is shown in Fig. 3.1 B for V/a = .1

The wavefront is a sphere whose center is located a distance Vt

dow•.wind from the source.

3.12 Wind Shear

Consider a wind in the x-direction whose magnitude depends on z.

A sound ray will propagate as shown in Fig. 3.2.
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T•he ,oud .... I.. •-t.... ,:irected along the ray and the wind

speed V is always alonrg t'1e Y-axls. Def•nirg a• e

ray makes with the x-axis, and considering only motion in the

x-z plane, the e4uations for the path of the ray are

dz
= a sin e

(3.3)

dx
dt a cos + V (z)

As the wave progresses G changes.

Equation (3.3) can be solved by successive approxir-ations taking

z= zO + z1

x = x, + x 1 ... (3.41)

=9o +i

The zero order equations are

dzo
= a sin 00

(3.5)
dxoo

with the solution

-24-
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z = at sin 9
0 0

(3.6)

X0 = at cos &0

corresponding to a ray in the direction e 0 In the first order
0

equations, we can set cos 01 = 1 and sin eI = since V/a << 1
so that

dz- a eI coso

dt 0

(3.7)
dx-

J" - a 1 sin e + V (z0 )

E4uations (3.7) can be solved most easily by first neglecting e1

and then correcting for it using

dzo dz 1

tan e = tan (9 + l) 1z -• dFI (3.8)

For the winds V(z) used in this section, the terms involving

Sin Eq. (3.7) will be smaller than the term V(z) and wili in-

volve only a small correction to x and z 1. This can be made

more explicit by considering various types of wind.
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Constant Wind Shear

In this case V = Gz and the ray equations become

dz 1

-dxI

-= Gz° = Gat sin ° (3.9)

with solution

% = zo = at sin e

x = x + x at cos +oGat 2 sin e (3.10)

The ray paths are found by eliminating t from (3.10) giving

x = z cot% + z (3.11)0 z a sin
0

The wavefront configuration as a function of time is found by

eliminating e from (3.10) givingO

22a 2 Gtz
x= \2at - z2 + 2 (3.12)

Equations (3.12) is plotted for a wind shear of G = (.2'/sec)/ft

in Fig. 3.3. It is apparent that the acoustic wavefronts are no

longer spherical but are slightly blunt nosed downwind and increase

in deformation with range. The terms involving i in Eq.
can now be calculated. Equation (3.8) gives

-26-
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a sin S tan e
tan a cos t +-Gat sin V = 1 +Gt tan u

(3.13)
tane + tan e

tan S = tan (6 + 0tan tan'•

which gives

I =- Gt sin2 e0 (3.14)

Thus the correction terms in Eq. (3.7) are always less than the

term V(z, ). Since the distortion as shown in Fig. 3.3 is not

very large, there will not be much error. in using Eq. (3.9) instead

of Eq. (3.7).

Turning Wind

A turning wind assumed to have a velocity Lncreasing steadily

with height will have a sinusoidal var'.ation in velocity with

height when projected on the xz plane as

Vx = Hz sinb

in which H is a constant relating to wind strength and b is a

constant relating to the tightness of turning. The wind profile

is shown in Fig. 3.4 for one vertical plane. The ray equations

becomes

dz 1

dxI at sin 9 0(1)
S1 H at sino sin b (3n14)

-27-
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The solutioi• is

z = at sin e

b at sin 141 si 6- sin -------

0

The ray paths are

x=zcot + asn sin Cos (3.16)

and the wavefront Configuration is given as a function of t by

x= Ta 2 t 2  H bt sin I - cos (3.17)

These results are plotted in Fig. 3.1 fir b = 1140'Hb = .02 a = 23'/sec. The wavefront has some dents but remains
almost spherical.

3.13 Temperature gradients
The sound speed, a, depends on the temperature, T, through the

reaIon

a = r 
(3.C8)

where T = p/v ?- gas constant
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r '- + a + -_a then

L . T (3-19)
" a 0  2

La is given as a function of AT in Tat! 3.1 for T = 2700.Z

1 0. 50C.T o0. o200C. 50o0.

, a I..8'/sec 3.7'/sec 9.2'/sec 18.4"Ysec3 /sec 92'/sec

Table 3.1

16)

To find the ray paths and wavefronts we make use of the analogy

with geometric optics.-L-/ Since tie speed of propagation at any

point is independent of" the d".rectin of propagation, we can

define an effective "index of refraction," H = ala = 1 - Aa/a.

7) In the atmosphere, temperature varies primarily with height so

we can takL ~- - (z). As in geometri; optics, we can use Snel]'s

law of refraction to obtain tha ray .•th. Consider a ray in the

layered atmosphere shown in Fig. 3.5.

At each interface. Snell's law states that

1i cos 9 = W3s2 cos 9os3 = o = -4 cos ^4 etc. (3.20)

These relations hold regardless of the number of layers and we

have the general equation

_(7) cos O(z) = constant = cos e (3.21)
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The ray paths and wavefront shapes can be found by integrating

Equation (3.21) and using the fact that a wavefront is a surface

of constant acoustical path length from the source.

Constant Temperature Gradient

For this temperature distribution, we have

AT= - Gz and

G

10

for temperature decreasing with height.

Sln-e • (z) > i , the ray will have no turning points for which
0 = 00 as is seen from E4. (3.21). The ray paths and wave-front

shapes can be found exactly through integration of &m. (3.21) using

tan = (3.23)

but since Gz/2To << I, it will be simpler to solve e~uatIons
similar to (3.3) approximately. The ray e4uations are

Sa0 a_ a0
dz = 2o=•

sin 0 - ~2S
n n- 0

(3.24)
dx ao a cos 3

S--cosS= 0 0
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Taking n (z) = i (z) = . (aot sin e ) in E. (;324) gives

dz sine G a 2 t ( 20O-T =- ao si 0- Tot (sin 0-

(3.25)

=ao cos 0- GT sin 0 s cs

The so uti• u is

G a 2 t 2
222z=at sin %a0  sin _i)

0 2T 0 0in2

G a 2 t 2  (3.26)

x = aot cos _ Sin e Cos 00 0 N s o o0

-Ing a It
which is valid for--#---- << sir. t Eliminating t gives the

-1 
0

.3) ray paths

G z cos e
x = z cot e 0 0 (3.27)

4 To sin 9°

EliAminating 0 gives the wavefront configuration as a function of

4) t !,I e

\ Gz [2 2 _ 2 Gz 2 1 2t
x = [ I - - - 0

The •avefronts are plotted in Fig. 3.6 Oor G = 1°C/400 .
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3,14 Wavefront Roughening by Turbulence

The distorted wavefronts considered in Sec. 3.11-3.13 and plotted

in Fig. 3.1, 3.3, 3.4,, and 3.6 are all fairly "smooth." The dis-

tance over which significant changes occur in the rays or wave-

fronts is much larger than the acoustic or radar wavelength. It

is this property which allowed us to use the geometric acoustics

approximation. For propagation in a turbulent atmosphere, however,

the temperature and wind speed will vary almost randomly over
shorter distances (although still larger than a wavelength). Since

turbulence is a random phenomenon, its effect can be predicted only in

a statistical manner. Che-rnov16/ is an excellent reference on wave

propagation in turbulence. We will refer to his work freuently

in the following sections. Propagation through turbulence will

cause the amplitude a-nd phase of a wave to deviate from their

values for propagation in a homogeneous medium. Since a wavefront

is a surface of constant phase, knowledge of the phase fluctuatIons

will deter.mine the distortion of the wavefront. If the fluctua-

tiors a&e small, the amplitude of the wave will be approximately

the same as in a homogeneous medium. Thus, for our purposes, phase

fluctuations are much more important than amplitude fluctuations.

The phase of the wave, V , is defined by writing the wave amplitude

(a plane wave in this case) in the form

pCt) = A (7) exp [-i(ca-t-k-x) + i*'Ci9I (329)

where : = frequency

k = 2�"Aa = wavenumber

A (7) amplitude

For a homogeneous medium, 0 = 0 and for the case of isct-ropic
turbulence <V> = 0 where < > denotes average value.
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The mean local speed of propagation is <a> + <V> winle the

instantaneous speed of propagation is a + V. We can define

a "turbulence strength' ii as

a +Vr
Ta>+ 1 + r (3,30)

where Vr is the component of V in the direction of propagation.

From this expression 9 is a random fn.ction of position wjth

y in average value zero and is given approximately by

=AV + i -/'IT (3.31)ao 2 To

w~tere AV, AT are the differences Vr - <V>r , T - <T>. Thne phase

fluctuations in the wave are determined by the space correlation

function, N(F,, C2), of the turbulence defined as

'7 f F2 ) <= .L(r4L gr 2)> (3.32)

For homogeneous turbulence N (?t7 r2 ) N 1 - .' and for

isotropoc turbulence N -rI - r21 =r r 2

The functional form of N(r) is not well known, but there usually

exists a correlation distances s, such that N(r) is very. small

for r > s. This correlation distance can be associated with the

scale of4 the turbulence. For many of his calculations, Chernov

assames a Gaussian correlation function for P so that all possi-

b infornation is given by the values of <P > and s. Chernov

considers the phase fluctuations for a plane wave but most of his

results are e-ually applicable to tne case of a spherical wave.
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There are two dimensionless parameters which are important for

determining phase fluctuations. The first is ks or 2ms/?a , the

ratio of the turbulence scale to the acoustic wavelength. While

the inner scale of turbulence may extend down to centimeters,

most of the turbulent intensity is found in larger scale inhomo-

geneitles. Golitsyn, Gurvich, and Tatarskii-L/found that most

turbulence has a scale of between 100' and 10,000'. Since the

smallest turbulence produces the greatest wavefront distortion,

we will choose s = 10'. For acoustic wavelengths considered

(114 cps; Xa = 10') the ratio 2•si a >> 1. The second dimension-

less ratio is called the wave parameter d and is given by

2 2RX
d = 4R/ks 2R3

7MS

where R is the distance of propagation through the turbulent

medium. Physically, d is the ratio of the size of the first Fresnel

zone to the scale of the turbulence. For X = 10' 1 s = 100' , wea
find

d R

so that small R corresponds to d << 1 while large R corresponds to

d >> 1. With a Gaussian correlation function for P, Chernov finds

for the mean s4uare phase fluctuation-/

<_ý2 2-jr2 VTr<P-2> s R tj + . anf dNS2- (3.34)
a

For the case d << 1.
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0 =2 > 4 2 v<19> s R (335)
a

while for d >> 1

S= 2 v*R
<2> 22 2 (3.36)

a

In these cases the rms phase fluctuation varies as

s (3.37)
rms rms a

The R dependence of *rW is the same regardless of the form of the

correlation function. In addition to the mean square phase fluctua-

tion <* 2>, we are interested in the correlation distance of the

phase fluctuations along the wavefront. Chernov!l-found that the

correlation distance for phase fluctuations Is approximately the

same as the correlation distance for turbulent fluctuations. In

fact, with a Gaussian correlation function for turbulence, the

correlation function for phase fluctuations is also Gaussian with

exactly the same correlation distance. Thus, the effects of turbu-

lence on the acoustic wavefront are given in Eq. (3.34) - (3.37)

together with the fact that for phase fluctuations, the correlation

distance along the wavefront is s. To get an order of magnitude

estimate of <VA, we can substitute A = 10', s z 100', rMs = .01a "

giving
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"s fR I-fR where range is in ft

For rmw M .001

Srmw =2=

R 1

so Irms may be large or small depending on Prms

Essentially the same results may be obtained from a highly simpli-

fied model of propagation in turbulence. Consider the propagation

of sound through a turbulent eddy of size s and turbulent wind

strength AV. Some parts of the wavefront are speeded up by AV

while other parts, within a distance s, are slowed down by AV.

This difference in velocities obtains for a time s/a producing a

distortion in the wavefront which may be considered as a phase

fluctuation. T'he size of the phase fluctuation is

27rAx 27r s 2rsAV (3.37)
~rms ya ?a a aA

where Ax is shown in Figure 3.7.

In traveling a distance R, the wavefront passes through R/s such

eddies. Since the direction of each wavefront distortion is ran-

dom, the problem of finding the total phase fluctuation is a

random walk problem. For a sequence of N fluctuations of A* each

in random directions, the rns. total deflection is A'ý \J._ The

final result for 0.2 > is thus
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. 2 s R<( _)2 > 4-.2 '2> s R (3.38)

a a

which has the same functional dependence as Eqs. (3.35) and (3.36)

and differs only by a numerical factor between 0.9 and 1.8.

3.2 Reflection From Deformed Wavefronts

3.21 Single Wavefront

The radar beam will be incident on a certain region of the acoustic

wavefront. This region can be characterized by its location, area,

orientation, curvature, and roughness. This section will consider

the conditions affectipZ the reception of a reflected signal but

will not consider the interpretation of the information carried by

the signal. To study the effects of wind, temperature, turbulence,

and humidity, it is necessary to first look at the reflection from

an acoustic wave propagated in a completely homogeneous, isotropic

atmosphere (no wind, constant temperature, no turbulence). The

wavefront will be a smooth sphere of radius, ta, centered at the

acoustic source which is assumed to be co-located with the radar

antenna. According to either geometric optics or wave theory, the

entire radar signal reflected from the wavefront will return to

the antennae This follows from ray theory because all rays strike

the wavefront at normal incidence and retrace their paths when

reflected. According to wave theory, the acoustic wavefront is

also a surface of constant phase for the radar signal. The solu-

tion of the wave equation then gives a transmitted diverging

spherical wave and a reflected converging spherical wave. Since

the transmitting antenna has a finite area, the reflected signal

will not focus to a point but will cover an area at least eq'al

to that of the antenna.
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Any deviation from homogeneity or isotropy in the atmosphere will

change the wavefront characteristics from those of a smooth sphere

centered at the antenna. A steady wind will keep the wavefront

smooth and spherical but will cause the center to move. Wind shear

will cause the curvature of the wavefront to change as will tempera-

ture gradients. Turbulence will cause the wavefront to become rough

(because of phase fluctuations). In thiL section we will consider

radar reflection from the types of distorted wavefronts discussed

in Sec. 3.1.

Steady Wind

The wavefront in a steady wind V is a sphere of radius ta whose

center is a distance Vt downwind from the source. The wavefront

still acts like a spherical mirror but the antenna is no longer

at the center. This is seen in Fig. 3.8.

0 is the angle between the wind and direction of search and

e = V sin (3.39)W a

using the approximation V .< a which is certainly valid. The

reflected beam comes to a focus at a distance 2Vt from the antenna

(t = time at which the radar reflects from the wavefront). Al!

rays within the radar beam width will be focused at the image

therefore increasing the beamwidth will not increase the image

size significantly for such a spherical reflecting surface. The

reflection of a finite-width radar beam from a curved wavefront

produces essentially the same result as reflection of a single

radar ray (no beam width) from a plene wavefront whose nornal

makes an angle e with the incident ray.

W
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If the diameter of the antenna is D then the diameter of the

image will be at least D. Examination of Fig. 3.8 shows that

the reflected beam passes within a distance 2Vt sin 0 of the

antenna. Thus if D > 2Vt sin 0 , part of the reflected beam

will fall on the antenna. Expressina t in terms of the range

R, the condition becomes

a 2 V sin 0 (3.4o)

If this condition is not satisfied, then no reflected signal

(to this approximation) will be received. This condition is

too strict, however, since the reflected beam usually has a

finite width at its closest approach to the antenna, making

the area of the beam at that point much greater than that of

the antenna. Also, as we will see in the discussion of reflec-

tion from "rough" wavefronts, the reflected signal will cover

an even larger area if there is turbulence in the atmosphere.

The same results for the reflected siL.al obtained above using

geometric optics, can be obtained using the wave theory. The

wavefrorit may be regarded as an aperture which is illuminated

by the incident radar beam. The pattern of the signal reflected

from the wavefront is knovm for the case e = 0 where the wave-w

front is a surface of constant phase. When e w 0, the relative

phase of the radar wave varies linearly with distance along the

acoustic wavefront which is acting as a mirror (the linear varia-

tion holds approximately if the illuminated portion of the wave-

front is not too large). Silver-20/ has shown that if the

relative phase distribution on an aperature differs by a linear
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( function of distance from that on an aperture with a known radiation

pattern, then the pattern of the new aperture is identical to that

of the old aperture but rotated through a constant angle. In this

case the reflected beam makes an angle 20w with the incident beam

which agrees with the relation obtained using geometric optics.

Wind Shear2 Temperature G0.-.dients

These two conditions affect the wavefront by displacing it, changing

its orientation, and changing its curvature. The results of changes

in location and orientation have been considered above and in this

part we will consider only effects of curvature.

At any point, 6he wavefront has two principal radii of curvature.

For reasonable values of wind shear and temperature gradient, both

these radii of curvature are approximately equal to the range R.

The beam sent out from the antenna will be focused at a point be-

tween the effective wavefront center and the wavefront if range is

"greater than the radius of curvature. If range is less than the

radius of curvature, the beam will be focused further from the wave-

front than the effective wavefront center. These cases are shown

in Fig. 3.9. In both cases shown in Fig. 3.9, the reflected beam

at the antenna is much larger than the size of the antenna (the

size of the image). Figure 3.9 is drawn for rays in one of the

principal planes of the wavefront. If the two principal radii of

curvature differ, the rays in the two principal planes will focus

at different points and there will be no well-defined image of the

antenna. The area of the reflected beam at any point can be found

from knowledge of the radar beam width, the range of the wavefront,

and its two principal radii of curvature.
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The fact that the reflected beam covers a larger area for distorted

wavefronts can cause a decrease or an increase in the received sig-

nal under different conditions. If the beam falls on the antenna

satisfying SE.. (3.40) then the received signal will decrease for a

distorted wavefront since the power in the reflected beam is spread

over a larger area thus giving a smaller intensity in the beam at

t'he antenna. On the other hand, if the beam does not fall on the

receiving antenna the beam spreading caused by a distorted wavefront

would increase the intensity striking the antenna.

These results also follow qualitatively from the wave theory. Again

considering the wavefront as an illuminated aperture, a change in

curvature will change the relative phase symmetrically about the

center line. This is seen in the fact that the drawings in

Fig. 3.9 are symmetric about their center lines. The relative

phase will be a quadratic function of distance along the aperture

(wavefront). The reflected pattern aepends on the shape and illu-

mination of the aperture but some general results can be found.

Silver 0/calculates the radiation patterns of several apertures

for zero phase differences and for quadratic phase differences.

He finds that the reflected pattern is wider for the quadratic

phase difference aperture regardless of whether the phase differ-

ences were positive or negative. This agrees with the resuls of

Fig. 3.9 that the reflected beam is wider regardless of whether

the radii of curvature are larger or smaller than the range.

"The result that deviations from a spherical wavefront produce a

broadening of the reflected beam will be encountered again in the

sub-section on turbulence. This will not be unexpected since

turbulence is composed of small scale wind and temperature gradients

and should produce roughly the same effect.
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3.23 Reflection From Roughened Wavefronts

The principal difference between what we call "turbulence" and

what we call "wind and temperature gradients" is one of scale.

Turbulence has a smaller scale than other inhomogeneities. There

are many characteristic lengths of importance for the reflection

of radar from acoustic wavefronts. The smallest of these is the

radar wavelength X e which is of the order of 1 or 2 feet. The

acoustic wavelength Xa is about 10 feet. The diameter of the

illuminated portion of the wavefront is BR where B = radar beam-

width angle, R = range, and BR may be as large as 1,000 feet.

The largest scale is the range itself which extends to about 10,000

feet. The scales of wind and temperature gradients considered

(larger than 1,000 ft) are larger than the illuminated portion

of the wavefront While the scale of turbulence considered

(s = 100 ft) is larger than Xa but may be smaller than BR. A

graph of BR vs. R for various beanwidths is shown in Fig. 3.10.

If BR < s then the phase fluctuation will vary smoothly over the

"illuminated portion of the wavefront and the radar reflection

will be similar to that considered in the section on wind shear

and temperature gradients, However, if BR > s, the illuminated

portion of the wavefront will appear rough producing a more diffuse

reflection. It is this case (BR > s) which will be considered in
21/this section. Chernov_-;' considers the type of image produced-when

the illumination of a lens has random phase fluctuations of magni-

tude ,rms and characteristic scale length s.

1(y) = 10 exp [-(y/y0 j 21  (3.41)

where I(y) = received intensity at a distance y away from the

focus in the focal plane

10 = received intensity at the focus
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and

y Ra *rms (3.42)

0o s 7r

Io depends on y since approximately the same total power is

reflected, regardless of the area over which it is spread. Using

the fact that

Go

Pr f I(f) dS = 2r Io f exp [-(y/yo) 2 ] y dy (3.43)

0

is the total power reflected from the wavefront, we find

I0 r 2 (3.44)
rYO

Equation (3.41), (3.42), and (3.44) thus serve to determine the

received intensity at a distance y from the focal point of the

reflected beam. Putting in y = 2Vt sin 0 = 2RV sin O/a as is the

case for reflection 4n a steady wind, and * rms from (3.36), we

obtain

PrS [ V2 s sin2  (.5

o=r (345) 2

o P - exp -[ (3.46)
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C" s2 s l2
with C = C2 =2 ,sn2  0 (3.47)2r \/• <P > 2 \(7 a <2 ¢•>.

The same qualitative results may be obtained from the simplified

model introduced in Sec. 3.14. The rms phase fluctuation is

with a correlation distance s. Thus any two points on the

wavefront within a distance s from each other may be advanced or

retarded with respect to each other in space by a distance:

26x = 2 --rm a (3.48)

The rms angle that the turbulent wavefront makes with the average

(smooth) wavefront is

eT =--lms a (3.49)
5 T sr s

We can assume that the reflected beam will have a half-width

of 21T. Since the direction of reflection from a smooth wavefront

makes an angle 2Cw with the incident beam, we have the situation

shown in Fig. 3.11.

The angular distribution in the reflected beam is assumed to be

Gaussian

1,(0) = I' exp [- (e/20T)2 (350)
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__Pr 1 (
As in Eq. (3.43), I0 r (3.51)0 470192 R2

T

The additional factor l/R2 accounts for the spherical divergence

in the reflected beam. Putting Eq. (3.49) for OTV Eq. (3.36)
for <02 and 29w for e , Eq. (3.50) becomes

P" s exR L A7siR2 (3.52)4.1r V(•<tL2 R3 Lx 2 \(7-a.2 <11'ýRI

This expression has the same functional form as Eq. (3.45). The

numerical constant C2 is identical and C, differs by a factor of 1/2.
For future calculations we will use Eq. (3.45) - (3.47) since they

are probably more accurate.

The expression for I can be considered as the product of an

amplitude term and an angular distribution term. The amplitude f
term has a factor 1/R 2 from spherical divergence, and a factor

s/R <(P2> from spreading of the beam. The angular distribution
term has a maximum value of unity, and becomes very small if

V2 s sin2
2 Via 2 ( 2 R(3.R3)

Equation (3.53) is the condition for misalignment of the reflected
beam and the receiving antenna and poor reception. When = 0=
1800 condition Eq. (3.53) will not occur and the rteceived signal

will be detectable for all values of the parameters. This occurs
when the direction of search and the wind direction are either
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the sdme o-r oppoQ1.te,. From Eqc. (3.53) we see that for f'ixed

V., s. 0P, and <P. > there is some "blind range" R 0 below which
zq. (3.53) may oeccur and sIgnals may not be received at close

range. If 'UhisL `blind range" is le~s than the maxiimuim range,ý

Rinax, of t'h' probe. 4; hen a detectable signial will be received
for~ ~~~ ' ro ~ 3.46) we s"~ that Chas the

dimensions o&-4 a lengtŽ1 and is directly proportional.ý to t-he R.
mentioned above. C 2 is made srm.alier by decreasing V, decreas-

ing s, or increasing <PL X

?rom Ithe above analysis, it appears 'that the most se-rious

miisalignment problems occur for small R. However, we muist re-

member that the .-adar- antenna has a finite diameter, D. From

Z.is.(3.42) and (3.36), the -reflected beam has an approximate raditis

Y= VRIS~rs (3.51)

To receive a signal it Is not necessary that the reflected beam

fall on the center of the antenna but only that the beam. fall

on some part of the antenna. This condition may be stated as

D + ~F2 1 /4 P R H / 2V i

rR/s >2ti4

or

D + 3/27 1/ Lrs Vj > Y sn 0(3.55)

For sufficiently small R. this condition is always satisfied. (It

is also satisfied for sufficiently large R as was seen above.)
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To obtain an estimate of the reflected intensity as a function
of range we can make Eq. (3.46) dimensionless. For this purpose,

let the normalized range variable be

RX = -
c2

and the normalized intensity variable be

Y =
Pr C1

Then substituting into Eq. (3.46)

1
Y = exp( ) (3.56)

This is plotted in Fig. 3.12.

In order to estimate expected values for intensity and range from

Eq. (3.56) or Fig. 3.12, the following method can be applied.

First choose (or measure) values for V. <2, > , and s thus giving

C1, C2. The value of C2 provides the conversion from X to R

giving the graph a horizontal scale. The value of I calculated
from

I I= 22 Pr Y (%3.57)
- -1 r.

C2
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is the intensity received at the radar antenna in terms of the

p reflected from the acoustic wavefront. The value of Pr/'Pi

depends on the acoustic wave intensity and shape as discussed

in Sec. 2. The dependence of acoustic wave intensity and shape

on range, fre4uency, acoustic power radiated, and source geometry

is discussed in Sec. 4.

The calculation of received power at any range takes place as
follows:

1. Use assumed (or measured) values of V, <•, , s, and D

to calculate C,, C2 and to determine the range of R for

which R < aD/(2V sin 0), i.e., for which the reflected
beam falls on the antenna.

2. For R < aD/2V sin 0, the received intensity will be high

provided the sound wave is strong enough (R < R max)

3. For R > aD/(2V sin 0) continue as follows:

4. Find X fm R by X = R/C 2

5. Find Y from X using Fig. 3.12

6. Find the acoustic wave intensity and shape at range

R using the results of Sec. 4

7. Find P Pi for reflection from the acoustic wave

using the results of Sec. 2

8. Calculate I from Eq. (3-57) and knowledge of P
"i

9. Power received = i x Area of radar antenna.
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3.24 Off-Normal Reflection From a Train of Plane Shock Waves

As with a single shock wave, if a train of waves remain perfectly

plane, there will be little or no off-normal reflected signal re-

turning to the antenna when the angle between the radar beam and

the normal to the acoustic wave exceeds 1/4 of the radar beam-

width. There will be a reflected signal if the wavefronts are

sufficiently rough to have a part of their area normal to the

radar beam. For the case of two wavefronts shown in Fig. 3.13

normal reflection occurs at points A and B' although not at A'

and B. For the signals reflected at A and B' to interfere con-

structively, we must have

R R m = integerRB, -A = e

Since RB, - RA X a >> Ne , it should not be difficult to adjust

N so that (1) is satisfied. However, even though the radar fre-e
quency is adjusted to give optimum reflection from such areas

back to the source, the fact that these areas exist at random

locations over the region of the shock wave train illuminated by

radar, they will be as a group incoherent in that direction. On

the other hand, in the direction of specular reflection, all such

irregularities will have coherence. It is apparent that a single

shock wave front may be deformed sufficiently by irregularities

in the atmosphere to direct a significant fraction of power back

toward tne source by scattering. A train of waves however, is

relatively insensitive to such irregularities and therefore re-

flection from such a wave train tends to be highly specular with

very little energy directed back to the source when the waves are

not normal to the radar beam. Thus a train of waves tend to

support specular reflection in an inhomogeneous medium but cannot

be made to improve reflection at an arbitrary angle by choice of

the radar wavelength.
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FIG.3.1 WAVEFRONT SHAPES IN STEADY WIND
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FIG. 3.11 REFLECTION FROM ROUGH WAVEFRONT
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L. SUuND PROPAGATIUN IN THE ATMOSPHERE

Sound in air is a longitudinal wave motion of the medium which

propagates from its driving source at a speed determined by the

physical characteristics of the medium. The directions of sound

propagation away from the source are determined by the geometry

of the source and its confinements. As the wave propagates

through the air irregularities such as wind, wind shear, turbu-

lence, temperature gradients etc., modify the local velocity of

the sound causing significant alterations in the directions

originally taken by the sound wave as it left the source.

As sound radiates it carries energy away from the source. The

rate at which energy radiates from a source source is expressed

in terms of power level PWL defined as

PWL = 10 log W/Wref db re 1013 watt (4.1)

where: W is the sound power radiated from the source and W

is a reference power unit conventionally taken as 10-13 wart.

The amount of power radiated per unit area normal to the direction

of ;he wave propagation is the sound intensity expressed in db

IL = 10 log I/Iref db re 10-.1 watt/cm2  (4.2)

For many purposes the pressure variations in a sound wave are of

more direct concern than the intensity. In a free progressive

wave the sound intensity and the rms sound pressure p in the wave

are related by

2
I P- ý4.3)pa

where p is the air density and a is the speed of sound.
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The sound pressure Ievpl e PT. IA •e A -%

SPL = 20 log FP db re 0.0002 L bar (4.4)
ref

The reference pressure is chosen to make the sound pressure

level and the intensity level numerically equal for sinusoidal

sound waves under conditions near room temperature and pressure.

Other pressure levels such as the peak pressure level and the

peak to peak pressure level will be used subsequently in the

following discussion. They will all employ the same reference

pressure 0.0002 9 bar and so they will not be numerically equal

to the intensity level of the sound wave.

As sound in air propagates away from a source it may undergo

little change in amplitude and wave form or it may suffer a

large decrease in amplitude and a radical change in its wave

form depending upon the geometry of the source, the atmospheric

attenuation characteristics, the sound frequency, and the ampli-

tude of the sound wave.

4.1 Spherical Divergence

A sound source which is physically small compared with the

wavelength of the soaund acts as a point source and radiates

uniformly in all directions. The sound intensity I at any

distance r from such a source is therefore related to the total

sound power, W, radiated by the equation

W (4.

-51-
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and the Lnest lel iS

IL = PWL - 10 log 4irr2  (4.6)

This same relation holds for any phy.-cal spherical source which

radiates uniformly in all directions.

4.2 Directivity

A sound source which is comparable with or larger than a wavelength

does not radiate uniformly and is therefore said to be directive.

The directivity factor Qe for such a source is defined in any

direction e as the ratio of the power radiated in that direction,

We, to the average power, Wavg, radiated in all directions.

= We/Wavg (4.7)

Near any real source it is generally not possible to specify a

directivity factor because the directi3r of energy flow is not

known. However, at large distances the energy flow is radial and

the sound intensity along any radius decreases inversely as the

square of the distance from the source. In this so-called far-field

the directivity factor in any direction can be determined from the

geometry of the source.

For the present purposes it is of importance to know the directivity

at a large distance along the axis of a plane piston radiator such

as a parabolic radar antenna or acoustic horn. The directivity for

such a radiator of diameter D is

() -- (4.8)

This is the relation which is called antenna gain in radar

applications.._2/
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The total beam width to the half power point for such a source at
1 A40* ^n, 4n 4ý, _A3__

0 7oX
U= - in degrees (4.9)

In the near-field of a plane radiating surface the sound may radiate

nearly as a plane wave but edge effects cause small ripples in amp-

litude along the wave front and corresponding small undulations in

phase. From a practical standpoint, the near field of a plane

radiator acts like a plane wave field in most respects over an

area corresponding approximately to the area of the radiator. In

this near-field the average sound intensity remains substanti.ally

constant along the axis. The division between the near-field and

the far-field is not sharp and indeed it does not have a unique

definition.

For the present purpose the end of the near-field will be defined

as the radius Rn for which the far-flield equation gives a sound

intensity equal to the average intensity over the face of the

piston radiator.

The far-field intensity I f at the end of the near-field Rn of a

circular piston of diameter D is given by

If =4•

n
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the near-field intensity I, is given by

I 4W

Equating If and In and using Eq. (4.t. for Q gives

Rn rD 2  (4.10)

Within the near-field the sound intensity exhibits a number of

maxima and minima determined ny the source geometry and wavelength.

On the axis of a plane circular source the maxima all have a sub-

stantially constant value. This is illustrated in Fig. 4.] for ai,
24,25/

experimental source- ' 5 wavelengths in diameter. The average

sound intensity in the near-field is approximately 6 db below the

intensity peaks as indicated by the dashed horizontal line. The

calculated far-field sound intensity for this source is shown as

the dashed line having a slope of -6 1; per distance doubled.

The intersection of these dashed curves determines the distance

Rn to the end of the near-field. At the end of the near-field

the measured sound intensity falls substantially 6 db per distance

doubled. Farther from the source atmospheric attenuation (dis-

cussed in Section 4.3) causes a more rapid decrease in the

intensity of the experimentally measured sound.

Directivity gain obviously increases with increase in the diameter

of the source relative to the radiated wavelength. Increase in

directivity has advantage from two major aspects:

(1) it decreases the main beam angle thus enabling a more

detailed searching pattern and (2) it permits the radiation

of increased intensities in the desired directions with a

given total radiated power.

-54-
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( For a radar signal, the amount of ener•v which can be transmtted

by the main beam is limited only by the power capabilities of the

source and by the degree to which side lobe radiation is sup-

pressed. Thus the intensity of Dhe main beam and therefore the

total power incident upon a target which is small compared with

the beam cross section can be increased directly as the cross

section of the pencil beam is decreased, i.e., in proportion to

the directivity.

For a sound wave. the advantages expected from an increase in

directivity are modified by other factors not encountered with

radar; these greatly affect and limit the extent to which a gain

in performance is secured by increase in directivity. When a

stationary and homogeneous medium exists around the source and

when the sound waves do not carry much energy, the relations

governing directivity are much the same as for radar waves. How-

ever, when the medium has a velocity as is the case of the real

atmosphere with wind, the sound beam is swept down stream with

the velocity of the wind. Although the wind may be slow, several

feet per second compared with the speed of sound over 1000 ft/sec,

the drift may be sufficient to throw a narrow beam seriously out

of alignment with the radar bear and result in the need for intro-

ducing searching and tracking complications into the radar control

system in order to follow the sound waves.

A much more stringent limitation upon the use of directivity

arises from the nonlinear nature of air as a transmitting medium

for sound. The air, in eliect, will overload and will not
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propagate sounds above a limiting intensity regardless of the

source power or the influence of' directivity. This limitation

is more fully discussed in Section 4.4.

4.3 Atmospheric Absorption

A sound wave traveling through air undergoes a decrease in

intensity in addition to spherical divergence discussed above.

This additional decrease in intensity results from an absorption

of energy from the sound wave by heating the air or from dissipa-

tion of sound energy by scattering.

Absorption causes a decrease in intensity of the form

1= -I emx (4.11)

whe.re i and 1o are intensities at x and x = 0 ft respectively

m is tnhe attenuation coef'LicieŽnt in ft

The at,.• , _ constant c in %b p-r f, is given by

qI.a.3-: ci/ft (4.12)

A nor;..alized picz of atzttnuation in db for a plane wave is

presented in Figure 4.2. A similarly normalizea plot for a

sphercca-l ;:ave i; givez. in Fig. 4.3.

4.3: Classi',a! AZsorption

At -'rejiuencies sminor losses occur as a result of classical

absoi.ptio; including, 1) viscous losses, 2) heaL conduction Crom

the ;-:an :-glozis of the pressure peaks to the coeler regions of
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(
the pressure minima, 3) heat radiation between regions of different

temperature and, 4) diffusion of molecules from the raster moving

regions of the sound wave into slower moving regions.

All of these losses are insignificant in magnitude compared to

molecular absorption at frequencies telow 10 kc.A-6/

4.32 Molecular Absorption

As sound vibrations pass through air containing small amounts of

water vapor the molecules of water are set into vibration and ab-

sorb energy from the wave. The amount of absorption depends upon

the sound frequency, the absolute humidity and the temperature

in a complex wayA.T-/

1) At any chosen frequency f, a maximum absorption

cmax occurs at a value of absolute humidity h1m

which is independent of temperature

f = h2 (4.13)

where f is in kc.

hm is in gm/m3

This relation is plotted in Fig. 4.4.

2) For any chosen frequency and humidity the ratio

w of the molecular absorption amol to the maximum

molecular absorption amax is given theoretically

in terms of the ratio of the absolute humidity

h to hM by the relation

2
W %ol/%iax -- 2 "2(.4(h/hmax) + (hax/h)2  (4.14)
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thp hpntf- -v"~ena aue fccr t"S relation is

plotted in Fig. 4.5. It should be noted that
the experimental values of absorption represented
by the curve in Fig. 4.5 are higher than those

predicted theoretically at high and at low v~lues
of humidity but are in excellent agreement in the
region around hM-

3) The value of max increases linearly with
frequency as shown by the curves in Fig. 4.6
for 'max vs. f, with temperature as a parameter.

4) Mhe value of amol is obtained by multiplying

the amax obtained from Fig. 4.6 by the w

obtained from Fig. 4.5.

Absolute humidity h can be determined conveniently from measured

relative humidity by use of Fig. 4.7.

4.33 Scattering

At low audible frequencies where molecular and classical absorption

both become very small, there is more attenuation of sound observed

experimentally in long range signaling than can be accounted for by

these processes. Some of this may result from a scattering of

sound by inhomogeneities in the atmosphere. Experimentally the

attenuation seems not to fall below approximately 0.001 db per

foot.

Such scattering has two effects of importance in relation to tha
;J4AC Probe. First, the scattering causes a withdrawal of energy

from the progressive sound beam and a resultant increase in atten-

uation by redirection of the sound energy. Second, it tends to

promote a broadening of the steep front of a shock wave by causing
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slight variations in arrival time of wave contributions which

have passed through slightly different paths of the inhomogeneous

medium. Neither of these relations has received much theoretical

or experimental study. The following discussion exposes the

problem, presents plausible values related to some experimental

observations, but indicates the need for experiemntai verifica-

tion of results.

Inhomogeneities in the atmosphere cause variations in the speed

of sound and thereby cause variations in the direction of propa-

gation of the wavefront of any sound disturbances passing through

these inhomogeneities. The effect of such variations in the

wavefront is to cause a redirection of sound energy in a random

manner from various points along any wavefront. It is possible

to calculate the subsequent position of the wavefront and the

shape of the shock wave by adding the contributions from all

points on the wavefront during its entire path of travel from the

source to the point in question substantially following the

method of Section 3.14. Such an addition can be carried out

only on a statistical basis because the inhomogeneities within

the air are in themselves predictable only on a statistical

basis. Tne net result is a reduction in the sound intensity at

a distance by the direction of sound out of the direct path.

The inhomogeneities also tend to cause a broadening of the steep

front of a shock wave but this broadening process is opposed by

the finite amplitude distortion process discussed in Sec. 4.41.

Whereas the broadening effect of turbulence is independent of the

sound wave amplitude, the distortion effects tending to steepen

the wave are directly proportional to the wave amplitude. There-

fore, it is expected that turbulence will have little effect in

broadening the wavefront i' the wave has sufficient amplitude.

However, when the amplitude drops below a level at which the
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steepening and broadening effects are equa-, a avef.on. will

broaden rapidly. This amplitude is apparently dependent uon

the magnitude of the turbulent velocities, the structure of the

turbulence, the geometrical configuration of the wavefront, the

initial form of the sound pulse, etc A theoretical determina-

tion of shock wave structure as a func. 'on of all these variables

would be very difficult and apparently has never been done.

However, for use with the ElAC Probe, all that is reiuired of a

shock wave is that it be relatively thin compared with a radar

wavelength, and that its level remain sufficiently high. A

rough method for calculating level and shock front thickness is

presented in Sec. 4.4h which gives the shock thickness produced

by attenuation aione. Since these results are in good agreement

with experimental measures of shock structure, it is fairly safe

to assume that turbulence broadening is not the most important

cause of shock thickening.

4.34 Precipitation and Fog

Suspended particles in the atmospherE produce acoustic losses

by two mechanisms. First, there will be viscous dissipation

and heat conduction near the suspended particles, and second,

there are relaxation losses because the time lag between evapo-

ration and condensation on the particle!i as the local pressure

and temperature changes when the wave passes.

Experimental studies of sound attenuation in atmospheric precipi-

tation and fogE2b2-8°show that these losses can be neglected.

Attenuation in fog changes slowly with frequency and is below

.3 db/l000 ft for frequencies less than 2 kc even in heavy fog.

Absorption by water droplets exceeds molecular absorption at

low frequencies (below about 300 cps) when both are small but

at higher frequencies, absorption by droplets can be neglected

compared with molecular absorption.
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4.4 Nonlinear Sound Propagation

Sound waves of any shape or harmonic content tend to deform

toward the sawtoothed shape which is the stable wave form for

high amplitude sound. The leading edge of the stable wave is

a shock front whose thickness dependb upon the amplitude of

the wave and the attenuation characteristics of the medium but

not upon the frequency of the fundamental component of the wave.

4.41 Wave Distortion

Finite amplitude distortion of this sort Js important on two

accounts. First, energy is transferred from the fundamental

component into the higher harmonics; since these are more
rapidly attenuated than the fundamental, an excess attenuation

of the wave results which drains energy from the sound beam in

direct proportion to the magnitude of the pressure discontinuity

and the number of discontinuities per unit distance along the

sound beam. Second, the distortion of the sound wave creates

a sharp pressure discontiruity at its leading edge. Thi dis-

continuity provides the optimum condi2lon for the reflection

of radar waves from a pressure variation of a givrn pressure

amplitude. This last fact is of utmost importance in the per-
forr-ance of the sound wave as a reflector in the electromagnetin

acoustic probe.

There are two causes for the change in shape. The first relates

to the fact that sound consistv of longitudinal vibrations and

as such the alternating particle velocity of the medium is

parallel to the direction of wave propagation. In such a wave

the maximum positive particle velocity corresponds in time and

space to the maximum excess pressure. The maximum negative
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partlcle velocity correspondls to the minimum pressure of tne

wave. Thre',re, t.e pressure Peaks and troughs of an acoustic

wave travel respectively witn the velocity of sound plus and

minus tue particle velocity. The second cause of frnitc ampli-

tude distortion is that an acoustic .n-ve is adiabatic, i.e.,

the local temperature of the air incrases as the pressure in-

creases. 3ince the speed of sound increases as the sluare root

of absolute temperature, the local wave velocity is greater

than average at pressure maxima and less at the minima. In a

normal gas the results of these two factors are additive causing

pressure maxima to overtake pressure minima and create a steep

pressure front at the leading edge of an acoustic wave.

As the wave front steepens, nhe energy of the "iave Ls converted

from !he fundamental and low harmonics into higher harmonic

components. The steepness of the wave front is limited by the

balance between tne rate of transfer of energy into the riigher

harmonics and tue loss of energy from the nigher xarmzionizs by

means of attenuation wnich converts a- -.stic energy into neating

of the air through which the wave passes. The mechanism of the

absorption is unimportant. The magnitude of the absorption as

a function of frequency will determine the ultimate sharpness

of the shock front which is necessary to create the balance of

energy flow into the harmonics and from the harmonics into heat.

Th'n lower the rate of absorption from each harmonic, the ;loser

the wavefront will approacn a theoretical discontinuity and the

closer the amplitude of each harmonic will approach the theo-

retical aosolute limit of 1/n compared with ti.e ampl'atude of

the fundamental.
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This action .'s s"wwm dramatically Ir i_ .!

of ).'!lloscope wave traces iupicting the pressure as experienced

jy a micropnone located in an intense 14 kc soxnd wave at several

distances from a plane piston circblar source for four sound out-
put levels.

T:Ie traces -•n Fig. •.c nave ceen adut.:d all to the samu height

by increasing the gain In tne o.scilloscope so that tile wave shapes

could be compared directly. The widening of ttic trace at 200 cm
.or the lowest souna !vc. is caused by circuit noise which be-

co:ne. evident at •n.t nIgh .ain zJeting since tL;i display system

_.zw: a uroadzand circuit with no illtering.

it czn be seen that at tne lowest sound level (140 db rms averaged

over tne face of the source) the wave progresses with little ob-

servable distortion tiiroughout Lhe range of observation, 200 cm

(approximately 90 wavelongthn). At the highest level (1"- db rms)

Salthough the wave i3 equally pure at the source, it distorts

rapidly and becomes sawtootned in a _-vw wavelengths.

At the l" ub, level the wave occomes noticeably sawtootried at a

distance of appro>'imately 6 wavelengths wnereas at 15O db the

same amoait of distortiox. re.j-ircs approximauely 20 l:a w:iengths.

-- Is four1 t. -r imen.ally ;at•, - "rr .metrically

sz;..iiar -iolds, Lne ax . c.' disturtion ootaln i or any

t,'en sound Intenr-",, is a f~n3rctln only of the distar.-, from the

sc..rCc neasured In u:ilen.ths of the fundamental fre-.:. yof the

sound rar .atec.

W.
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These considerations indicate that in order to obtain a maximum

range with the EMAC system it is necessary to utilize a low

frequency signal so as to reduce ordinary atmospheric attenuation

and finite ampi-tude attenuation to an acceptable value for the

chosen range. It is then necessary :o increase the source power

to the point where the acoustic wave will reach and maintain a

sawtooth wave form in order to take advantage of the high reflec-

tivity of the sharp pressure discontinuity at the leading edge

of a finite amplitude wave. Mathematical relations governing

the frequency and source power are discussed in the following

section.

4.42 Finite Amplitude Limts

A high amplitude plane wave of stable form (i.e., sawtooth shape)

will attenuate2/in amplitudt according to the relation

du _ (1+l) udx (4.15)
u aN

where: u is the particle velocity a:-;Iitude

x is the distance

Sis the ratio ci specific heats

a is the velocity of sound

A is the sound wavelen-th

= _ (e+i) pdx (4.i6)
P 'YAPo0

where: P0 is atmospheric preL-u:-

p is excess sound presst- •plitude
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For sound fields which are not plane the change in sound amplitude

involves.the divergence of the wave. A general treatment of non-

plane fields has been considered by Rudnick in relation to the

transmission of sound in horns of varying cross-section. If we

consider a horn in which the area, S, of an equiphase surface of

the wave depends upon the distance of propagation of the wave,

then the area S at any distance x is given by:

2t

Sg 2(x) = SO (4.17)

00where S,= So0 at x = xo0 and thus g (xo 0 i

Combining the relation for divergence and the attenuation from

Ejuation (4.15)

du _• (••)udx
du g -Yý . X •(4.18)

or from Equation (4.16)

dp - - (y+l)paA (4.19)
P g 'YýPo

Continuing now only with the equation for pressure and letting

p = vg where v is a new variaule Eq (4.19) reduces to

dv (y-+l)gdx (4.20)=e - _ Po ( ._o

_v 2 Yýo

which can be integrated to 7ive,
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O= go g(x) ft v
1+ +1~l Po g(x)dx

0

where p is the excess pressure amplituue in a sound wave at distance

x from the source and p0 is the excess pressure amplitude at x = xo-

From this equation it can be seen that there is a limit to the

value of p at any distance x which cannot be exceeded regardless

of the amplitude of p0 at the source and this value we shall call

the limiting pressure pi

i YX PO g(x) (4.22)

(y+l) f g(x)dx
x
0

There are two cases of interest here for which the evaluation of

pi is instractive. The first case is that of a plane wave.

Although a truly plane wave cannot be generated and used in open

space, its performance is descriptive of the process of finite

amplitude limitation of the pressure in a sound wave as it pro-

gresses away from the source. The second case is that of a

spherical wave. Here the limiting relation will be seen to

involve an additional term modifying the limit'for a plane wave

in sueh a way that the two limits can be handled separately to

advantage in real applications.

-OC-
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y- Pc

= yl 0o (4.23)

which indicates that the limiting pressure may be unlimited at

the source where x = x but at any other distance this pressure

must decrease as (x- i.e., inversely as the distance

measured in wavelengths.

The limiting pressure is proportional to the atmospheric pressure

and for a normal atmosphere of 106 Pbar (I Pbar = 1 dyne/cm 2) the

limiting pressure is

pL= 1.4x 106 (4.24)= 2.4 (x 7- x) 7.•

po = .58 x 10 6  (4.25)

where n is the number of wavelengths from the source. This

relation is indicated as tr. heavy solid line in Fig.(4.9) where

the reciprocal of pZ Is plotted against n.

When the exc- pressure in the wave is not infinite at the source
but has some initial value P21 the pressure at a distance n wave-

length from the source is given by

p _2 Pl (4.26)P2 + Pi
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which is seen to be represented in Fig. 4.9 by lines parallel

to that for an inrinite shock at x - xo but Intersecting the

n = 0 axis at values of 1L corresponding to the sound pressure
radiated at the source.

Since this analysis assumes that the waves considered have reached,

or are generated with the stable sawtooth form, they remain saw-
toothed as they propagate.

Before proceeding to the spherical wave case It is helpfUl -to

replot the results shown In Fig. 4.9 in a more conventional form

as shown in Fig. 4.10 where the sound pressure level is ex-
pressed In decibels against the log of the distance from the source

expressed in wavelengths. In this representation the limiting
pressure for an Infinite shock at n = 0 Is a straight line having

a negative slope of 6 db/distance doubled ad passing through 189.3
db at a distance of one wavelength from the source corresponding
to zq. (4.25). The curve representing the variation of pressure

level for a wave having a preassigned amplitude at the source will
be a curved line starting horizontally at the left with a value

approaching the assigned value at the source and approaching the

lImiting pressure asymptotically toward the right.

It is interesting to note that the slope of the limiting pressure

curve as plotted in Fig. 4.10 for a plane wave is the same as
that for the sound pressure In a spherically divergdng wave of
low amplitude. In the latter case the pressure amplitude falls off

as h/r because of divergence but that process Involves no loss of
energy. We my therefore expect a steeper slope when finite ampli-
tude losses are considered In a spherical field.
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To dete=-#m&.1 te effect of finite amplitude limitation upon a

spherical wave. return to i. (4.22); substitute r 'or x and

1/r for g(x) representing Dhe spherical divergence and then

integrate.

N

STh is gives

SPO(4.27)P 'Y +l I loge°
X' e rr r

where r is the distance from the center of divergence, ro is the

distance from the center to the surface of the sound source. This

equation, obtained by Laird-2/ also using a somewhat different analy-

sis is sitailar to that for a plane wave, but has the extra factor

loge r/ro in the denominator. This iactor becomes unity when

r/r = e (i.e. r/r = 2.7). A plot of this factor in decibels

C is given in Fig. (4.11). A plot of Eqs. (4.24) and (4.27) in

Fig. (4.12) compares the limiting pressures for a plane and a

spherical wave. The straight line is the limiting pressure for a

plane wave star'ting at r = 0 and the curved line is the limiting

pressure for a spherical wave having its center at r = 0 but start-

ing from a spher*cal source whose radius is one wavelength. It is

apparent that (as in Fig. 4.10) the amplitude of the plane wave is

unlimited at P = 0. The spherical wave is unlimited at the surface

of the spherical source, r = ro. The spherical wave and the plane

wave have the same value of limiting pressure when the spherical

wave has progressed to a radius 2.7 times the radius of the source.

The two curves of Fig. (4.12) are useful in combination because a

simple translation of the spherical wave limit along the plane

wave limit can be made to account for an arbitrary change in size
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of the spherical source. For example, if the source radius is

2 A instead of A as assumed in Fig. 4.12 the spherical wave

limit may be translated to the right diagonally along the curve

for the plane wave limit until the source position corresponds

to 2 X instead of X. It will be seen that the two lines will

then cross at 5.4 wavelengths instead of 2.7

4.43 Applications to Experiment

As was noted in Section 4.2, real sources can seldom be considered

as strictly plane wave generators or as spherical wave generators.

A plane piston moving in a rigid baffle approximates a plane

source near its surface and a spherical source at large distances.

The dividing distance R. between the near-field and far-field for

acoustic purposes was established in Section 4.2 as

rD 2R n (4.10)

where D is the diameter of the piston source.

In applying the finite amplitude limits to real sources we may,

with good approximation, apply the plane wave limit to the

near-field and the spherical wave limit to the far-field by

matching the two limits at the distance Rn-

Experimental data taken with the same 14.5 kc piston source

described earlier in relation to Figs. 4.1 and 4.8 are compared

in Fig. 4.13 with the theoretical limits calculated for that

source. The upper four experimental curves in Fig. 4.13 corres-

pond to the four sound intensity levels shown in Fig. 4.8. There
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is a u db difference because ?ig, 4.8 refers to a'verage intensity

level in the nc.r-fleld which is 6 db below the peak intensity

2eve. It 1z sen u.± once that the sound pressure level measured

"Lhe far-field behaves as It should for a spherically diverg-

ing field, i.e., a 6 db decrease per distance doubled for the

lower sound levels recorded. However, when the sound level is

raised at the source it is seen that the sound level in the far-

field increases only so as to arproach but not exceed the limiting

pressure levels. At 100 wavelengths the sound at the highest

level of operation is more than 8 db below the value expected

if the finite amplitude limit were disregarded. Substantially

no increase in level at this distance could be obtained by in-

creasing the source power.

Even if the real source could be replace.d by a theoretical plane

source the plane wave limit would still limit the increase in

sound level at large distances. The actual sound pressure would

be a few db greater than for the spherical field but the total

power loss would be very much greater.

It should be noted that the data shown in Fig. 4.13 apply to the

fundamental component of the 14.5 kc signal. All harmonics were

filtered out. The finite amplitude limits have therefore been

drawn to indicate the rms level of the fundamental in a sawtooth

wave having the peak amplitude indicated by the limits in

Fig. 4.12. The relation between the two is

P fundamental F27 p (4.28)

SPL = 20 log p -7 db (4.29)
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The finite amplitude limits may be applied in tie same way to tne

experiments of Midwest Research- Ii3stitute. There, tne frevuency

of 22 kc reflected from an 18" paraoolic mirror gives an effective

near-field distance of 34 ft.

"First, however, we shall consider only the effects of molecular

absorption as indicated in Fig. ,,.14. if the total radiated

power of 30 watts is assumed to be uniformly distributed over the

beam area e:tual to the area cf the reflector, the average SPL in

the near-field will be 14 db as indicated by zhe horizontal line.

The far-field SPL (neglecting a-sorption) will be represented by

a line having a slope of b db p_-.sing through the point 144 db

at 34 ft. Molecular absorptiorn is accounted for by use of the

curve 4.3 and setting 1 db absorption at a distance of ft since

the attenuation of th-e 22 kc signal is approximately 0.2 db per

foot. The attenuated level in the far-field is represented by

the light dashed curve. The attenuation expected in the near-field

can be obtained similarly by use of curve 4.2. Blending these two

attenuated curves gives tne SPL expected from tne source shown as

the heavy solid curve. Tie one measured value of 140 db at 10 ft

falls 2 db below the curve so constructed.

We now consider the effects of the finite amplitude limits on the

MRI experiment. Figure 4.15 shows the near-field SPL as before,

a horizontal line at 144 db. The wave is here assumed to be sinu-

soidal as generated. The plane wave limit for the near-field is

presented as the rms limit which would be measured by a sound

level meter for a sawtooth wave. It is related to p.

1p1 - p, for a sawtooth wave.
rms
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Tho.o rt*-c sph-ercal wave limit for the far-field is
rms

matlc'ed at 31' feet. The expected p for the sound wave is

blended from its initial level to approach first the near-field

limit then the far-field limit.

The experimentally measured sound pressure of 140 db at 10 ft is

in almost exact agreement with the p. and about 1 db higher
rms

than the expected value obtained by curve blending. It is seen

that the prms expected at 93 ft is 105 db which is some 12 db

lower than that which would be expected by considerling molecular

absorption alone. This difference while large has even more im-

portance when we consider means for extending the range of the

EMAC Probe. By considering molecular absorption only, we might

expect to be able to increase the sound level at any distance by

increasing the source output. Figure 4.15 shows that increase

in source power would make no increase in the sound level at

distances beyond 10 feet.

'urther consideration of the wave form of the sound indicates

that harmonic content becomes significant beyond a distance of

about 2 ft and energy is transferred from the fundamental to

higher harmonics. The decrease in the level of the fundamental

is indicated by the heavy dashed curve. It approaches a value

Ps fundamental =-.-- PF6 s sawtooth

which is 2.2 db lower than the level of the sawtooth.

When the sawtooth wave progresses to the distance at which the

rate of decrease in level due to the finite amplitude limit is

less than the rate of atmospheric absorption (primarily molecular)
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the sound level will drop below the finite amplitude limit. The

higher harmonics raise the level of the sawtooth wave above the

fundamental. Therefore, we must apply a higher attenuation to

the sawtooth and the attenuation of the fundamental to the funda-

mental itself. By this process it is seen that the sawtooth level

is expected to approach the fundamental and the wave shape reverts

to sinusoidal. This action is shown to take place beyond 60 ft

for the 22 kc signal in Fig. 4.15.

From these discussions it is clear that no system using high

frequency sound can produce useful signals much beyond two or

three-hundred feet even with unlimited acoustic power at the

source.

From these experimental results the serious nature of the finite

amplitude limit is clearly apparent. In order to attain dis-

tances of several thousand feet it will be necessary to reduce

the radiated sound frequency. Reducing the frequency will

raise the finite amplitude limit in direct proportion to the

increase in wavelength. Lowering the frequency will also decrease

the rate of atmospheric absorption but this appears to be a second-

ary ccnslderation.

In reducing the frequency we are faced with the fact that the

increase in wavelength will affect the directivity of any chosen

antenna and thereby affect the amount of power reouired at the

source to create a given sound intensity on the axis of the

radiator.

For a first cut we may look at a frequency near 1000 cps since

this frequency will have a wavelength still short enough to serve

as an effective reflector for useful radar wavelengths. Let us
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chooseý the frejuencY 1140 sinr.e thl. wl ....... WU. "e will

tnev choose arbitrarily a 10 i.r clameter a .. a source. Then

the near-field R extends to 79 ft. Figur .-. io ýinow, that the

finite amplitude limit permits a level zPf 100 db 1r, t x;-ss of"

3000 ft. Applying the atmospheric atteiuacion of between .O1 and

.001 db per ft indicates the sound wave amplitude would fail below

the finite amplitude limit at some distance between 300 an'" 2`000 ft

as indicated by the shaded area. So it is obvious tihat a 114C cps

signal can be maintained above 100 db to a distance of 1500 to

3000 ft.

If we assume the wave should become sawtoothed at lea3t by a

distance of 100 ft then the average sound 'ntensity in the near-

field should be approximately 145 db. This would re.uitre a sound

power level of 145 + 10 log 21- = 164 db re 10-13 wau or approx-

imately 2.5 kw of acoustic power.

Any increase in acoustic power would not increase the range but

would serve only to cause the shockwave to be developed closer

to the source and cause more objectionable disturbance to e-uip-

ment and personnel.

This in-;ensity would be extremely obj-,ctlonao:e to p :p .3 !1 evern

outside the main beam and even for :relatlvely ,,hort 1 :'sts of the

acoustic signal.

Such a signal in short burst woula retain the problem of matching

the raQar and acoustic wavelenr;th ;. give coherent &reflections

from &he several waves of th1 -h.

W4,.
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it now appears that any acoustic signal involving a train of

rep••-ed waves whIch arm eormensurate with the longest usable

radar wavelength will not be able to be projected much over

1000 ft and therefore will iot serve for pr bing the atmospher

at any useful range. We now therefore direct attention to the

use of a single shock pulse as the only practical reflecting

acoustic surface for long ranges.

4.44 Shock Wave Phenomena

A sound impulse may be considered to be made up of an infinite

series of sine waves. If such an impulse is radiated from a

plane piston source it will have a complicated directivity

pattern. As an approximation we may consider this directivlty

pattern to be mace up of the directivity patterns of all of the

harmonic components of the impulse.

For the freluency components having wavelengths which are long

compared tc the diameter of the source the directivity pattern

is essentially spherical. Only for wavelengths which are com-

parable with or shorter than the circumference of the source

is there any practical gain in intensity along the axis due to

directivity. As we have already found waves which are short

compared with the diameter of the source (i.e., 1 ft long) will

not have sufficient range. Therefore, let us consider generat-

in; a sing2• sinusoLdal half-wave pulse whose wavelength is

equal to the diameter of the source, i.e., 10 ft or 114 cps for

a 10 ft dish.

For this frequeency end dish size the near-field extends to 8 ft

and the plane wave finite amplitude lijmit (rims of a sawtooth)

passes through 164.7 db at 100 ft. The plane wave and spherical

-76-
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wqave 11ri 4V00L 141. i

order for the wave to be substantially sawtoonthed at inn ft the

average intensity in the near-field should be of the order of

175 db. A single pulse may tend to sharpen on its trailing edge

also thereby producing a double shock or N-wave which is not de-

sirable for the EMAC Probe system. To avoid such sharpening of

the trailing edge the intensity of the wave may be dropped approx-

imately 10 db; the wave would not be expected to sharpen signifi-

cantly for over 1000 ft. However, if the pulse generated contained

a fundamental of this lower magnitude and also contained higher

harmonics so phased that the wave had a steep leading edge and

gradual trailing edge as generated, the leading edge would sharpen

to a shock rapidly and the trailing edge would be expected nevdr

to sharpen.

The higher harmonics included in the pulse for sharpening the

leading edge would have higher directivity than the fundamental
and would remain close to the center of the beam. Thus, these

harmonics, although more objectionable to personnel, would be

confined to the center of the acoustic beam.

7he finite amplitude limits near the source would be those

applicable to the higher harmonics but at large distance would

be that applicable to the fundamental. A graaual transition

should occur as the wave progresses. This transition has not

been studied in detail and appears so complex that it should be

submitted to experimental test.

From these considerations it appears feasible to create a wave

which will become a shock wave within a few hundred feet from

th& source and remain a sharp shock for a distance of the order

of 10,000 ft.

-77-

Or- o



.4

Bolt Berpnek and Newman Inc.

Th2 thickness of a shock front theoretically should depend only (
- the amplitude of the overpressure riot upon the frequency of

the fundamental. Calculations of the shock front thicknessi-4/

using the equations of motion for a steady state non-isentropic

transition across a shock indicate that it should be of the

order of 3 cm for a shock wave having a pressure amplitude of

the order of 100 db. This departs widely from the experimental

observations of shock fronts in air. Theoretical considerations

including the effects of molecular absorption have indicated

that the shock front should be about 15 cm thick at levels between

120 and 100 db. This is indicated indirectly by the curves of

Fig. 4.16 where the 1140 cps repeated shock wave begins to drop

below the finite amplitude pressure limit at between 120 and

100 db. In this region the shock front has grown to 1/2 wave-

length of the 1140 cps wave or approximately 15 cm. Fxperimental

evidence with N-waves of sonic booms bears out this conclusion.
32'Measurements /of several sonic booms are summarized in Table 4.1.

Amplitude of I Rise time of
Boom No. incident waves j steepest section Corresponding Thiciness

lb/s4 ftl dbI

1 .5 122 .6 ms .7'

2 .42 120 .9 ms 1.0'

3 apparently a ground wave; no shock front

4 .75 126 .7 ms .8'

5 .24 116 .5 ms .6'

6 apparently a ground wave; no shock front

7 .31 18dI .6 ms .7'

8 .42 120I .5 ms .6'
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Sonic booms 3 and 6 in Table 4.1 appeared to arrive in a nearly

( horizontal dirt.:ction since there was no visible separation be-

tween the incident and reflected wave. The rise time was very

long, several milliseconds, and included many shocklike ripples

which are assumed to be due to the successive additions of com-

ponents of the wave retarded by obstacles and inhomogeneities

near the ground. Even for these waves the initiation of the rise

was sharp.

A typical N-wave signature (Boom #7 from Table 4.1) is displayed

as oscilloscope traces at two sweep rates differing by a factor

of 10 in the photograph of Fig. 4.18. The leading edges of the

incident and the ground reflected waves are clearly separated.

For the incident wave the wavefront thickness is about 0.7 ft.

It should be noted however, that in the fast trace the initiation

of the pressure pulse forms a noticebly sharper corner than does

the crest of the pressure pulse. The observed sharpness in

Fig. 4.18 appears to be limited by the passband of the recording

system which rolls off above 2,500 cps. Thus, the actual sharp-

ness cannot be assessed from this figure. It seems likely,

however, that the index variation accompanying such a sound

shock most closely approximates an index variation with one sharp

corner and one round corner.

For the purpose of radar reflection, the presence of one sharp

corner significantly increases the reflection when the index

of refraction variation occurs over a distance in excess of a

radar wavelength as indicated in Fig. 2.3. Thus it is reasonable

to look for a useful radar reflection from an acoustic shock

wave even after the wave front has broadened beyond a wavelength

of the radar wave. Again, this premise needs experimental

verification.
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5. SOURCE CHARACTE.RISTICS FOR .AXTIATM RAEM1

5.1 Acoustic Source
A sound source must piovide sufficient shock intensity to travel

several thousand feet in order to be useful. The source should

be somewhat directive in order to conserve source power out more

important it should be dire.tive in order to avoid hazards to

operating personnel and minimize annoyance in surrounding

communities.

It now appears that an ideal pulse at the source should have a

rise time which is of the order of a few milliseconds so that

there will be a minimum of the high frequency sound components.

The high frequency components are undesirable at the source be-

cause they are more hazardous and more annoying than the very

low frequency components.

It appears that the pulse should have a long decay time for two

reasons: (1) a long decay time implies a large amount of energy

in the single pulse, (2) the long decay time, returning to atmos-

pheric pressure without the creation of a negative pressure, will

prevent the creation of a negative shock. Thus, such an acoustic

wave can avoid the variable interference effects expected in

radar reflections from the sonic boom N-waves.

The source need not and should not produce a shock wave near the

radar installation but should rely upon finite amplitude distor-

tion to create the shock at a distance somewhere in the region

between 100 and 1000 ft frcm the source. Such a design would

minimize hazard and annoyance and maximize the conservation of

energy in the wave. The decay of the trailing edge of the pulse

will not create a shock wave at any range if the decay is

sufficiently gradual.
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f, jc. a b vetween 100 and 1000 feet from the source, the

Intensity Thvf near the source must exceed a critical value de-

termined by Lhe initial pulse shape. The source power level will

be determined by this intensity level, the source size and its

directivity. On the other hand the sound intensity level outside

the main beam must not be high enough to cause personnel hazard

or annoyance. As mentioned in Sec. 4.44 the high frequency com-

ponents of the sound pulse will be much more directive than the

low frequency components. These high frequency components which

are more annoying can be confined to a fairly narrow beam and

can be directed away from the populated areas. The design of an

acoustic source with these desired characteristics will require

future study.

"The intensity and directivity of the sound field near the source

will of course be greatly influenced by the size of the sound

source itself. If the EIAC system is to be mobile, the source

and radar antenna both probably will be restricted to units of

( -the order of 10 ft in diameter. Such a source will give some

appreciable directivity for a 100 cps wave;Q t.-.illl be of the order

of &0. For the higher fre4uency components needed to sharpen the

leading edge, the source will be more highly directive, Q is about

1000 for 1000 cps. Since the amount of power needed in the har-

monics is small compared with that in the fundamental, and since

the source is more directive for these components the amount of

sound which spreads away from the center of the main beam is

relatively small for the high harmonics and should therefore

cause only a minor and perhaps negligible problem as regards per-

sonnel exposure especially since the pulses are of short duration

and spaced at relatively long intervals.
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r aionggr renge installation where the sound so,,ce aid radar

ansenras may be pe-r-manently located, larger source areas may be

utilized with the added advantage of greater directivity at the

chosen fre4uency or with the possibility of reducing the fundamen-

tal frequency component of individual pulses.

The personnel hazard for pulses is much less than that for contin-

uous tones. No experimental results are at hand for the effects

of low frequency pulses but extrapolation of data from 100 cps

indicates a probable increase in permissible exposure levels for

pulses repeating at 10 cps or less would be of the order of 20 db

or more.

The personnel hazard for low frequencý pulses should be subjected

to experimental study. Some work is planned at BBN in this area

and e4uipment is available for controlled experiments at the

present time. It may be advantageous to augment this work by

experiments directed specifically toward evaluating the effects

of an 3.AC source once a more definite specification of the system

has been developed.

3.2 Electromagnetic Source

As opposed to the situation of the acoustic source, there is no

fundamental limit to the intensity which can be propagated in

tne radar beam (at least within the range of power capabilities

currently availaole). Thus, the radar power can and should be

increased as necessary to utilize the full range for which the

accussic signal is above the background noise, but need not be

increased further. Some existing radar systems seem adequate

"zor this purpose. The most- important parameter of the radar

system for maximizing the range of the EM.AC Probe is the radar

wavelength. As discussed in Sec. 2.2 the power reflection
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coefficient from a dielectric variation is sensitive to the ratio

of the radar wavelength to the thickness of the dielectric varia-

tion. To have an adequate reflection the radar wavelength must

be comparable with or smaller than the shock thickness. The shock
becomes thicker as it propagates and thus the range of the probe

is limited substantially at the distance where the wave front

thickness equals the radar wavelength. There exist Doppler radars

such as the FPS-7 and FPS-20 having a wavelength of about 23 cm

which is sufficiently long to provide adequate reflections from

shock waves with sound pressure levels of the order of 120 or 130 db

re 0.0002 microbar.

Other parameters of the electromagnetic source have less effect on

range and can be varied within fairly wide limits. The beam width

can be decreased to give greater detail and higher intensity or

can be increased to cover a larger area. The duty cycle and search-

ing sequence can be modified depending on the meteorological condi-

t'Jons and atmospheric parameters of interest.

Since the overall power loss will be very high it will be necessary

to use such technijues as coherent integration and parametric ampli-

fication to obtain maximum range. It is estimated that, under the

most favorable conditions, an overall power loss of 239 db can be

permitted between the transmitted and received signal at the limit

of detectability for a system such as the FPS-7 or FPS-20. Using

this information and the method given at the end of Sec. 3 an estimate
of the maximum range of an M4AC Probe system can be made. Such

calculations will be given for a variety of atmospheric conditions

in Sec. 6.7.
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6. ACCURA•Y 0?-:EASRE;ENT CF ATMOSPH.ERIC PA3A.WETERS

6.! Wind Speed in Direction of Search
The local speed of propagation of the acoustic wavefront is the

vector su1 of the sound speed and wind speed a(-,t) + V(•,t).

The measured Doppler shift indicates the radial component ol

this speed. Thus,

2a0

f - a + o 2a . (6.1)f~ -o= (ar +V)-c

where

L = freuency of returned signal

= frequency of radiated signal0

c = speed of light

art,(Vr) = radial component of sound (wind) speed

a = sound speed at source
0

The relations between the several variables can be seen in

6. • .. We f nd

a. =a cosf3 and

Vt sin _ V sin (=sin at =- (6.2)

Also

V =V cos so that

V2
a, + Vr =a + V cos - V sin2  (6.3)
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( . = znL;e bet:een 7 and radial direction. The V cos 0
;. ..... -Y. V e sin ter, except for • 900 where the

a
+irec'tion ol' search is perpedicular to the wind direction. If

the Uind w.ere uniform at all points, the Doppler shift vs

curve would have the form shown in Fig. 6.2

In this case, the magnitude and direction of V could be deter-
mined from the shape of the curve. However, if the wind is not
uniform, Eq. (6.3) must be used. Unless the wind is very strong

and 0 = 900, only the V cos 0 term is needed. Even in that case,
the maximum error in V would be 10% and this could be reduced by
applying the correction term. The error in the Doppler shift

from changes in the direction of propagation is thus fairly small.

The shift also depends on the magnitude of the sound speed which
is related to the local temperature, T, by

where Y = Cp/Cv , R = gas constant.

If T deviates from the temperature at the source, TO, then there

is a change in f-f 0 given by

2 T-To2(a-ao 2 ao T

c'o 0 - a0 2T0

This change in sound speed due to a temperature change would appear
the same as a change in the radial wind speed. The value of Aa
corresponding to various AT's is f-hown in Table 3.1, Sec. 3.
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.u. e~ter as the a-titude of' the test region L' --n-.-reazed. i 1

the prie is pointed vertically, it will measure the change or,

temperature with altitude and the vertical component of the v:iid.

V . Since V., is almost always less than 53/sec, a vertically

pointing probe can measure T as a function of altitude to within
about 3°. If is known roughly, then T as a function of height

can be found much more accurately. Knowledge of the temperature

at a specified altitude can then be used in computing horizontal

components of the wind at the corresponding altitude as discussed
in Sec. 6.2. A horizontal wind which is uniform in direction is a

good assumption when considering altitudes which are high compared

with influencing obstacles on the ground. This assurnDtion will be

used in computing the wind components.

6.2 Wind Direction

Complete determination of the wind direction requires a determi-

nation of three components of the wind velocity. In practice, the

vertical component, Vz, is much smaller than the other two and can

be neglected. Under some atmospheric conditions the vertical

component is far from negligible but in such cases the vertical

component is confined to rather local areas and examination of

these areas in relation to surroundings can yield vertical velocity

calibration data.

6.21 Single Probe Methods

If the wind is assumed to vary slowly with distance and time. then

measurement of the radial wind in two directions can gi-ve infor-

mation on two components of the wind. Consider the collowing

measurements made on two nearby regions at low elevations as shown

in Fig. 6.3.
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....... . vI..,) has the sr•.e components V, Vy, V at (1) andx V z
(:), :.e ma:. ..casure the Doppler shift at (.) and (2). If the

. :. .er~ture iz the samie at the two locations then the Doppler
~nXzh. 6 g--e (irectly the radial wind velocities,

Prom Fit. 6.3 these can be seen to be

V -V Co Csino+v cos ecos O+V sin 6-

(6.4)

"'r(2) c r s + cos e cos + v sin e

where r and 0 are defined in Fig. 6.3

The term Vz sin e can be dropped since both V and e are small.

cos 9 can be set equal to one giving

sin i + V* Cos

Vr(l) =Vx5 2 Y 2 (.'
(0o.41)

= -v sin + V cos .
Vr(2) ~'x 2 Y 2

Solving Ea. (6.4') gives

= 'r(l) - Vr(2 ) - r~
"•k ()v • + Vr(2)

2 sin , y 2 Cos ±2 2

The error inherent in this method can be seen by considering that

there is an uncertainty 6 in each radial velocity measurement.

Then
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ih S~ graphed n Fig. 6.4.

iý.r 0 very small, Vcan be determined ve-ry poorly as3 would be,

expectea s4Lnce both prob-ings are essentially measuring V In-
y

cioeaýs:ng 0 increases the accuracy of wind directi~on measurements,,

but- decrfe*ases the probability t-hat t-he wind and tE.emperature a~re

thl zc- at both poin'ts of probin~g. Adding additional regions ofL'

measu*-em~ent can provide more information on T and V to reduce the

un--rttainty as these par-am~eL*ers change from one point to the next#..

6.22 Multiple Probe Methods

,-- method uses several prooes to samiple on~e region rather than

one probe to sampole several regions. T-he wind components are

obt-zained in the same manner as with one probe. The advantage or

this method over the single probe method is that it is not affected

by spatial variations of wind and tempera-ture. However,. it does

not seem that this advantage compensates for tChe additiOnal comn-

plexityi and cost- required to erect and coordinatle tGwo or more probe

systems. Various techniques of this type are discussed in the MRI

Thoport-s .

6.3 Turbulence

66.31 Detect~ion and Intensity

one effect of turbulence on the acoustic wavefront will be t~o

cause some parts to move faster or slower than others. Thus,

different parts of the wavefront will have diffeient Doppler

shifts.

If all parts of the wavefronst had the same Speed relative to the

radar, the returned signal would have a single fCrequency and
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iotld give a definite Doppler shift. However, if this is not
t1e case, the returned signal will have a spread of frequencies.

The Doppler shift is measured by comparing the phase difference

bet"ween transmitted and received signals as a function of time.

This phase difference will have a form similar to that shown in

Fig. 6.5.

The frequency spectrum of this curve then can provide information

on velocities and turbulence. A possible frequency spectrum is

shown in rig. 6.6.

The location of the maximum gives the mean radial velocity while

the width of the maximum gives the rms fluctuation in radial

velocity. These fluctuations result from wind and temperature

inhomogeneities and are related as follows:

Af 2 V A [V AT 2a.o t
f 2 [AV +Ia] +2-A =~ T + ao I =(6.6)
0 c r Y r 2To 0 c rms

there AV, AT = amplitude of velocity, temperature fluctuations

throughout the reflecting region, and LL is defined in Eq. (3.30).

6.32 Localization

7he measurement of Af deterunines the largest variation ±n radial

velocity occLzrri2.rg in the echoing region of the wavefront. It
would be very• dafcult to localize the turbulence to a smaller

regicn than this. It may be expedient, however, to use more than

one radar frequency in order to be able to obtain extended range

:•ch the lower frequency and fine definition of close wind struc-

ture with the short radar waves.
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0 .>,ructural Definition

.• c.ru. several ways that the scale of the turbulence can be

nea:;urec.. The sinmplest method uses the fact that the width of

the echoing region increases ,1th range and is fairly well knoun.

The Mf for each region measures the full intensity of turbulence

with a scale smaller than the region but only part of the inten-

sity of larger scale turbulence. if the intensity of turbulence

is plotted against the size of the echoing region, a curve like

Fig: 6.7 is obtained.

Since there is no increase in turbulence intensity above L = Lmax,

the maximum scale of the turbulence is L It will be much more

difficult to determine the minimuum scale of the turbulence. One

possible method uses the results of Sec. 3. The reflected power
at large ranges decreases as SPL/R 3 because of spherical divergence

and beam spreading. However, if the wavefront is rough on the scale
of the radar wavelength, the radar reflection wrill be almost iso-

tropic and the beam wil.l not spread with increasing R. In this

case the reflected power will decrease as SPL/R 2 . In this case,

the existence of turbulence having a scale comparable with I e can

be determined.

The scale of the turbulence discussed above relates to the size of
individual turbulent fluctuations or eddies and does not necessarily

relate to the size of a turbulent region. The size of a turbulent

region must be determined in a different manner. if the turbulent

intensity is knoiwn for all echoing regions wimthin a large volume,

contour lines of equal intensity can be drawn which will show the

size and shape of regions of strong turbulence. This method will

work well for turbulent volumes larger than several echoing regions.

S•naller patcnes of turbulence might be localized by using measure-

ments from overlapping echoing regions but since these regions do
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iot have z..r, Coun-aarles, the precision of this method will

.equ.re experamental evaluation.

6.4 Possibility of Differentiation Between Inhomogeneities

of Various Kinds

As seen in Eq. (6.6) temperature and wind fluctur.tions affect the

Doppler shift if the same manner. Observations in the atmosphere

show that these fluctuations are of the same order of magnitude.

h..hile it will be very difficult to distinguish between temper-

ature and wind fluctuation experimentally, this will not be a

major problem. Variations in wind and temperature are related

theoretically through the equations of atmospheric dynamics.

Thus, experimental knowledge of Af can pc:-i.de information on

both AV and AT. The accuracy of this method will probably have

to be determined experimentally.

6.5 Temperature Discontinuities

Temperature discontinuities or sharp temperature gradients will

reflect both sound and radar and can be detected in several wpys.

Consider the discontinuity showm in Fig. 6.8. At points A, B, C,

w-here the discontinuity is perpendicular to the radar beam, the

radar signal will be reflected and will return to the probe. This

signal will not have a Doppler shift near--a and may be difficultC.ý C
to detect. Sound reflected all along the discontinuity will re-

turn to the probe but will not give much information on the shape

of the discontinuity. It may also be masked by sound reflected

from other objects. The reflected radar and sound waves will give

the information that there is a discontinuity which can be investi-

gated with standard E1AC probe techniques. The transmitted sound

wave will be speeded up (if T2 > T!) and this will appear as an

-91-



L-,it- Lcranelt and Zletman Inc.
r

.~. ~.~'~."~~' .loca;lon and &Iimagn-ituue can

•..'..e:i. 2... l. sui'fice to oetermine the location and

. •:ue of Lhv t6ei.oeraturc discontinuity.

S. ?,.•idity- Changes

".uzirK zy changes serve to alter the attenuation coefficient of

the sound waves and the dielectric constant of the air. A change

in attenuation coefficient will considerably alter the range o1

the •-AC Probe. Since changes in the wind alter the range in

some directions more than others while humidity changes alter the

range in all directions, a change in the -7erage range probably

corresponds to a humidit,t change and can be used to detect and

measure these changes.

Changes in the dielectric constant of air affect the returned

signal much less than does a change in attenuation coefficient

and will not be very useful for humidity measurements.

Changes in liquid water content should be examined by means of

humidity and water vapor absorption of sound.

6.7 Maximum Range of MAC Probe

The maximum range of the probe depends on the characteristics of

the acoustic system, the radar system, and the atmosphere. We can

control the characteristics of the acoustic and radar system but

cannot control those of the atmosphere. In this section we will

choose some operating parameters for the RA.-C Probe system and

calculate the maximum range under several atmospheric conditions.

The radar system will be characterized by a radar t:avelength of

23 cm., a radar antenna diameter of 10', and a maximum permitted
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-ai2lerence of 239 db betw;een transmitted and received power

as discussed in Section 5.2.

The output of the acoustic system will be chosen as a single

N pulse but will be considered to propagate as an acoustic signal

with a fundamental frequency of 114 cps and a SPL near the source

of 175 db. A sound source, 10' in diameter is assumed as a plane

circular radiator. This sound field is discussed in Section 4.44

and shown in Fig. 4.17.

The atmospheric parameters for which we will take several values

are the steady transverse wind speed component (V sin 0), and the

turbulent wind speed (AV). The fractional radar-power reflected

at any range is found by using Figs. 4.17, 2.7, and 2.3 in com-

bination. The received power is then found using the method of

Section 3, page 48. We will assume a turbulence scale of s =

100'. The maximum razige is found by equating the received power

level to the radiated power level minus 239 db.

The maximum range for given values of V sin 0 and AV varies with

the amount of atmospheric attenuation the sound signal encounters.

This attenuatior may vary by a factor of 10 at any given frequency

depending upon temperature and humidity as detailed in Section 4.3.

Values for the maximum range calculated for several values of V

sin 0 and AV are presented in Table 6.1a and 6.lb. Table 6.1a

represents conditions of low atmospheric attenuation and Table

6.1b represents conditions of high atmospheric attenuation.
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V si 5 0 1 l'/sec 110/se,00
0 50,000 '15,000' 10,000'

IO '/sec 500' 10,000 '10,000'

100'/sec 50' 50' 9,000'

Table 6.la

Vsin 0 l/sec 10'/sec

0 20,000' 1 ,CO0' 4,000'

lO'/sec 500' 3,000' 4,000'0

lo0'/seC 50' 50' 3,000' 1
Table 6.1b

It is apparent that where a transverse wind occurs there is need

for turbulence in order that a usable amount of the reflected

radar signal be returned to the radar antenna. Without such

turbulence, specular reflection directs the main signal away

from the antenna. Fortunately, where high winds exist, turbu-

lence is usually encountered and in general the turbulence will

be of greater magnitude when the wind velocities are high. Cer-

tainly large turbulence will exist in regions where there are

large wind gradients which are probably the regions of greatest

interest.
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Four phases of experimental and developmental study are proposed

which may be undertaken in succession: (I) An experimental study

of radar reflection from sonic bo.)ms using suitable existing
Doppler radar installations. (II) An experimental study of a
number of simple, impulsive sound sources and a theoretical

design study for optimizing the most favorable one as an EMAC
component. (III) Construction and acoustical test of the sound

source designed in Phase II. (IV) An experimental study using

the source of Phase III in conjunction with a suitable radar

system. This phase is intended to demonstrate the practical
range and weather limitations to a first approximation and to
reveal the nature of the more important refinements which should

be incorporated into a working EMAC System.

Phase I

Phase I is designed to demonstrate the feasibility of obtaining
usable Doppler radar retuzrs from snook waves in air.

It is suggested that a suitable radar system be operated so as to

provide substantially normal incidence upon the ground reflected
sonic boom produced by an aireraft passing directly overhead as
indicated schematically in Fig. 7.1. ,here is the possibility
of obtaining radar reflections from ground-reflected boom and
also from the high altitude boom, however, these reflections will
be easily separated because of range differences. There is also
the problem of double reflections froi the two shock fronts of
the sonic boom N-wave. The reflections from the bow and tail
waves will be added and probably will not be resolvable because
they are generally separated only b, " distance of the order of
100 ft. This addition will involve variable amounts of phase

cancellation depending upon the exact distance between the two
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...-k5 of the .a. Ve. Thasus, te reaturned signals may vary widely

in amplitude because of this interference phenomenon. At some

ranges, however, (because the distance between the shock fronts

is continually expanding) the two signals should add in phase

and give four times the reflected power of a single shock. At

these ranges the velocity of the wave should be determinable by

Doppler techniques. The variation in intensity which is antici-

pated by this interference process should prove valuable in

determining the lower limit of sensitivity of the system.

Study of the returns from both the ground reflection and the

high altitude booms should provide a measure of the diminution

of radar reflection with height and with two related sound

intensities at the same height.

The actual experiment which is contemplated is the observations

of sonic booms created by supersonic aircraft provided by the

Air Force. As an example it might be possible to use one or

both of the two radar stations at North and South Truro on Cape

Cod for such observations. It is anticipated that the FPS-7

and the FS-6 systems at the ADC installation at North Truro,

and the FPS-20 and FPS-6 systems at the Mitre Corp. installa-

tion at South Truro could be operated by experienced government

personnel under the direction of the Air Force and suitable

recordings made which can be correlated in time direction and range.

Acoustic measurements would be made simultaneously. These measure-

ments would be made near the ground at two or three positions

along the ground zero flight path to establish the value of the

shock over-pressure and provide a detailed analysis of N-wave

signature. Several shocks should be observed at various times
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,k- during the day i:n order to determine as far as practicable the

effects of weather upon the shock wave and upon the observable

radar reflection.

Phase II

II is designed to utilize the results of Phase I in a

tical study of sources of controlled shock waves which

be adapted to an EMAC Probe ground installation.

ni, lcoomns although readily available for the initial experiments

- • ~se I obviously have serious limitations as a tool for weather

. - v:.tion. Their expense is prohibitive, their direction of

tray-- is not optimized with respect to the radar, and the charac-

teristics of an N-wave are probably not ideal because of the double
shock and the resulting uncontrolled interference between the two

reflected pulses.

t 1  Several sound sources should be investigated including:

1. Yachting cannon

2. Dynamite

3. Mild explosives

4. Internal combustion devices

5. Compressed air discharge

The last of these appears, at the outset, to offer the greatest

promise because of the much closer control of the significant

parameters such as over-pressure, volume change, rise time, decay

time, and discharge products.

Specifically a theoretical study program should be undertaken to

determine in detail the control parameters of such a source and

to determine the necessary power and physical dimensions which
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A optiize t�h...e.•.. Pange. As a starting point for this

, analysis acoustic measurements should be made of the

shock wavc signatures of :, limited number of simple impulsive

sources near the ground.

Phase "IT

Phase III is dir'ected towaz. the production of an experimental

sound source applicable for uoe in conjunction with a suitable

radar installation. This phase depends largely upon the outcome

of Phases i and IT,

The cost of the source obviously will depend upon its mode of

operation and final size as determined by Phase II. It is

expected that a usable source could be constructed from the

developments of Phases I and II which couid be tested for its acous-

tic characteristics by ground measurements on an open range such

as Bedford or Logan Airport. Ground measurements of the acoustic

pulse should be made over distances, hopefully up to one mile C
from the source depending upon the clear range which can be made

available.

The operating parameters of the source should be varied by steps

during these experimental measurements in order to obtain optimum

values for pulse shaping and for maximizing range. Such tests

might involve a few weeks of performance in order to cover a

range of operating parameters and to encounter at least a moderate

amount of variation in atmospheric conditions. The acoustic source

parameters should also be adjusted to minimize personnel hazard

and annoyance without reducing the range significantly.
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Phase IV

Phase IV is intended to demonstrate the joint operation of a

suitable radar system and the sound source developed under

Phase III.

The sound source developed under Phase III should be operated

with a suitable radar system. Measurements of the acoustic sig-

nal along the ground should be made simultaneously with some of

the near-horizontal radar observations.

Measurements of acoustic wave signatures at elevated heights by

means of balloon-supported microphones should also be conducted

for some of the non-horizontal sound projections. Measurements

at heights beyond those for wnhich cable connections are practical

might also be considered with radio-link systems.

(2
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8. CuNCLUSIONS

1. The use of a high frequency acoustic beam is the major

limiting factor in the range of the EMIAC Probe system.

2. For long range, 10,000 ft or more, the acoustic signal

should have a frequency of less than 500 cps.

3. The use of a long wave train for obtaining reinforcement

of the radar reflection involves serious problems which outweigh

its advantages.

a) Such a long train will require coherent matching
between the radar wavelengths and the sound wavelengths where-

ever the reflection is to be reinforced by this process.

Therefore, as the wave passes through areas where the ground

velocity of the wave is altered the radar frequency must be

altered simultaneously. Circuitry to enable such frequency

tracking is complex and valuable radar search time will be used

in order to provide a wavelength matching adjustment.

b) In turbulent and Inhomogeneous areas, sound wavelength

will vary and may be expected to change within the length of the

wave train, thereby restricting the length of the useful beam.

c) If the acoustic wavelength is increased by reducing the

acoustic frequency as necessary for long range propagation, the

radar wave will require a corresponding increase, and the radar

beam can no longer be maintained as narrow as is necessary for

detailed probing with any practical size of radar antenna.
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d) At the low frequencies required for long range trans-

mission, the length of a wave train itself would preclude

detailed probing of small regions of interest.

4. As an alternative for the multiple wave train, the use of a

single shock wave front as a radar reflection surface has many

advantages.

a) The single shock provides a thin reflection surface

which is well defined and thereby provides the best or possibly

optimum condition for the radar reflection.

b) I-lore power can be carried by a single shock than can

be carried by a train of sound waves. A shock wave can be

launched as a portion of a sine wave and thereby result in little

annoyance to personnel in the vicinity of the launching site,

even though the sound pressure may be extremely high near the

source. C

c) The single sinusoidal pulse can be made as long as is

consistent with the requirements for directing the sound in

desired directions while shading critical areas that may be

affected by the intense sounds. The single pulse, though gen-

erated nearly sinusoidal in shape will deform and become a

shock wave as the wave progresses provided only that its ini-

tial amplitude is sufficiently high. The single shock will

remain sharp for a distance approximately n times as far as a

train of n shock waves having the same length as a single shock.
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d) When the sound wave surface is carried down stream by

C- the wind the specular reflection of the radar frcm the sound

surface will be directed away from the radar antenna. Turbulence

and homogeneities in the air will serve to roughen the spherical

wave front surface and cause scattering of the radar beam.

The effectiveness of this scattering mechanism for returning

radar power to the antenna is far greater for a single shock

wave than for a train of waves since the latter would have

inherent coherence in the direction of the specular reflection

and would cause a high retension of reflected energy in that

direction even with scattering irregularities.

5. A sound source for developing single shock pulses appears

to be relatively simple. A chamber which can be filled with

air and opened explosively should be tried as the actual source.

This might be placed at the focus of the parabolic reflector in

order to obtain the advantage of directivity.

S 6. The propagation of a single acoustic pulse through the air

should be studied by a simple experiment. The proposed experi-

ment should include as a minimum the generation of an explosive

signal having high energy at frequencies as low as 100 cps and

this pulse should be tracked with Doppler radar to determine

the magnitude of the signal and the potential range using for

example a '400 megacycle signal and perhaps also a higher

frequency for comparison purposes. It would be desirable

simultaneously to make acoustic measurements of the wave along

the ground at elevations as high as practicable as a check upon

the theoretical analysis which is presented in this report.
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L. i -;.r,,LH tLf2t the radar wavelength be larger thaan

Uife tij10oll..ss ol" the acoustic shock wave front for good reflec-

tL,,n. A preliminary experL-ment should be carried out using

:-onic boonm to determine the practical thickness of shock fronts

wit.1t small values of overpressure for a range of atmospheric

conditions. These experiments should include simultaneous

observation of thL amount of radar reflected from the measured

booms. Such experiments should materially aid in the evaluation

oV the requirements of an acoustic source for an EMAC Probe

system.
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